Friction-adaptive descent: A family of dynamics-based optimization methods

IF 1 Q3 Engineering Journal of Computational Dynamics Pub Date : 2023-01-01 DOI:10.3934/jcd.2023007
Katerina Karoni, Benedict Leimkuhler, Gabriel Stoltz
{"title":"Friction-adaptive descent: A family of dynamics-based optimization methods","authors":"Katerina Karoni, Benedict Leimkuhler, Gabriel Stoltz","doi":"10.3934/jcd.2023007","DOIUrl":null,"url":null,"abstract":"We describe a family of descent algorithms which generalizes common existing schemes used in applications such as neural network training and more broadly for optimization of smooth functions–potentially for global optimization, or as a local optimization method to be deployed within global optimization schemes. By introducing an auxiliary degree of freedom we create a dynamical system with improved stability, reducing oscillatory modes and accelerating convergence to minima. The resulting algorithms are simple to implement, and convergence can be shown directly by Lyapunov's second method.Although this framework, which we refer to as friction-adaptive descent (FAD), is fairly general, we focus most of our attention on a specific variant: kinetic energy stabilization (which can be viewed as a zero-temperature Nosé–Hoover scheme with added dissipation in both physical and auxiliary variables), termed KFAD (kinetic FAD). To illustrate the flexibility of the FAD framework we consider several other methods. In certain asymptotic limits, these methods can be viewed as introducing cubic damping in various forms; they can be more efficient than linearly dissipated Hamiltonian dynamics (LDHD).We present details of the numerical methods and show convergence for both the continuous and discretized dynamics in the convex setting by constructing Lyapunov functions. The methods are tested using a toy model (the Rosenbrock function). We also demonstrate the methods for structural optimization for atomic clusters in Lennard–Jones and Morse potentials. The experiments show the relative efficiency and robustness of FAD in comparison to LDHD.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a family of descent algorithms which generalizes common existing schemes used in applications such as neural network training and more broadly for optimization of smooth functions–potentially for global optimization, or as a local optimization method to be deployed within global optimization schemes. By introducing an auxiliary degree of freedom we create a dynamical system with improved stability, reducing oscillatory modes and accelerating convergence to minima. The resulting algorithms are simple to implement, and convergence can be shown directly by Lyapunov's second method.Although this framework, which we refer to as friction-adaptive descent (FAD), is fairly general, we focus most of our attention on a specific variant: kinetic energy stabilization (which can be viewed as a zero-temperature Nosé–Hoover scheme with added dissipation in both physical and auxiliary variables), termed KFAD (kinetic FAD). To illustrate the flexibility of the FAD framework we consider several other methods. In certain asymptotic limits, these methods can be viewed as introducing cubic damping in various forms; they can be more efficient than linearly dissipated Hamiltonian dynamics (LDHD).We present details of the numerical methods and show convergence for both the continuous and discretized dynamics in the convex setting by constructing Lyapunov functions. The methods are tested using a toy model (the Rosenbrock function). We also demonstrate the methods for structural optimization for atomic clusters in Lennard–Jones and Morse potentials. The experiments show the relative efficiency and robustness of FAD in comparison to LDHD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摩擦自适应下降:一类基于动力学的优化方法
我们描述了一系列下降算法,这些算法概括了神经网络训练等应用中常用的现有方案,更广泛地用于光滑函数的优化——可能用于全局优化,或者作为全局优化方案中部署的局部优化方法。通过引入辅助自由度,我们创建了一个稳定性更好的动力系统,减少了振荡模式并加速了收敛到最小值。所得到的算法易于实现,并且收敛性可以直接用李亚普诺夫的第二种方法来表示。虽然这个框架,我们称之为摩擦自适应下降(FAD),是相当普遍的,但我们将大部分注意力集中在一个特定的变体上:动能稳定(可以看作是一个零温度的nos -胡佛方案,在物理变量和辅助变量中都增加了耗散),称为KFAD(动能FAD)。为了说明FAD框架的灵活性,我们考虑了其他几种方法。在一定的渐近极限下,这些方法可以看作是引入了各种形式的三次阻尼;它们可以比线性耗散哈密顿动力学(LDHD)更有效。通过构造李雅普诺夫函数,给出了数值方法的细节,并证明了连续动力学和离散动力学在凸设置下的收敛性。使用玩具模型(Rosenbrock函数)对这些方法进行了测试。我们还展示了在Lennard-Jones和Morse势下原子团簇结构优化的方法。实验结果表明,与LDHD相比,FAD具有较高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
期刊最新文献
Approximated exponential integrators for the stochastic Manakov equation Dynamical optimal transport of nonlinear control-affine systems Subgradient algorithm for computing contraction metrics for equilibria Convergence of the vertical gradient flow for the Gaussian Monge problem Friction-adaptive descent: A family of dynamics-based optimization methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1