Vibrational comfort improvement for a passenger car driver seat

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Testing Pub Date : 2023-09-20 DOI:10.1515/mt-2023-0102
Serhat Akçay, Gürsel Şefkat
{"title":"Vibrational comfort improvement for a passenger car driver seat","authors":"Serhat Akçay, Gürsel Şefkat","doi":"10.1515/mt-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an experimental study aimed at providing new insights into passenger vehicle driver seat vibration. The study investigates the effects of various driver seat components on the damping coefficient. By employing a design for six sigma method, an optimized seating solution is proposed to enhance seat comfort levels. The control factors used in this study include seat cushion upholstery, topper foam, cushion foam, pulmaflex, torsion bar and seat structure. Seat position, foam thickness and body mass are considered as potential noise factors. Subjective evaluation of seat comfort is conducted using the SAE J 1441-2016, comparing three different passenger car driver seats. The seats are disassembled from the vehicles and mounted on a six-degree-of-freedom shaker test bench. Vertical vibration data are filtered, and transmissibility curves are experimentally obtained from the seat rail to the seat cushion via a pad. Uncomfortable seat prototypes are then manufactured, and alternative configurations are tested on the shaker. The objective and subjective evaluations of the seat prototypes reveal that lower foam hardness, higher foam density, and flexible upholstery contribute to improved comfort levels. Moreover, the prototype seat with optimum parameters receives a subjective evaluation SAE score of +0.75, indicating an enhancement in comfort.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"4 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mt-2023-0102","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents an experimental study aimed at providing new insights into passenger vehicle driver seat vibration. The study investigates the effects of various driver seat components on the damping coefficient. By employing a design for six sigma method, an optimized seating solution is proposed to enhance seat comfort levels. The control factors used in this study include seat cushion upholstery, topper foam, cushion foam, pulmaflex, torsion bar and seat structure. Seat position, foam thickness and body mass are considered as potential noise factors. Subjective evaluation of seat comfort is conducted using the SAE J 1441-2016, comparing three different passenger car driver seats. The seats are disassembled from the vehicles and mounted on a six-degree-of-freedom shaker test bench. Vertical vibration data are filtered, and transmissibility curves are experimentally obtained from the seat rail to the seat cushion via a pad. Uncomfortable seat prototypes are then manufactured, and alternative configurations are tested on the shaker. The objective and subjective evaluations of the seat prototypes reveal that lower foam hardness, higher foam density, and flexible upholstery contribute to improved comfort levels. Moreover, the prototype seat with optimum parameters receives a subjective evaluation SAE score of +0.75, indicating an enhancement in comfort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客车驾驶员座椅的振动舒适性改进
摘要本文进行了一项实验研究,旨在为乘用车驾驶员座椅振动提供新的认识。研究了驾驶员座椅各部件对阻尼系数的影响。采用六西格玛设计方法,提出了一种优化的座椅方案,以提高座椅舒适度。本研究的控制因素包括坐垫内饰、垫面泡沫、坐垫泡沫、冲力、扭力杆和座椅结构。座椅位置、泡沫厚度和车身质量被认为是潜在的噪声因素。采用SAE J 1441-2016标准对三种不同的乘用车驾驶员座椅进行了主观评价。座椅从车辆上拆卸下来,安装在六自由度振动筛试验台上。对垂直振动数据进行滤波,并通过衬垫实验得到了从座轨到座垫的传递率曲线。然后制造不舒服的座椅原型,并在激振器上测试替代配置。对座椅原型的客观和主观评价表明,较低的泡沫硬度、较高的泡沫密度和灵活的内饰有助于提高舒适性。此外,采用最优参数的原型座椅的主观评价SAE分数为+0.75,表明舒适性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
期刊最新文献
Interfacial microstructure and mechanical properties of Si3N4/Invar joints using Ag–Cu–In–Ti with Cu foil as an interlayer Investigation on quasi-static axial crushing of Al/PVC foam-filled Al6063-T5 tubes Experimental analysis of the effects of different production directions on the mechanical characteristics of ABS, PLA, and PETG materials produced by FDM Tribological and thermal characteristics of copper-free brake friction composites User independent tool for the analysis of data from tensile testing for database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1