Interfacial microstructure and mechanical properties of Si3N4/Invar joints using Ag–Cu–In–Ti with Cu foil as an interlayer

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Testing Pub Date : 2024-01-11 DOI:10.1515/mt-2023-0221
Tong Zhao, Defeng Mo, Xue Li, Haimei Gong
{"title":"Interfacial microstructure and mechanical properties of Si3N4/Invar joints using Ag–Cu–In–Ti with Cu foil as an interlayer","authors":"Tong Zhao, Defeng Mo, Xue Li, Haimei Gong","doi":"10.1515/mt-2023-0221","DOIUrl":null,"url":null,"abstract":"Abstract Si3N4 and Invar alloy brazed joints were achieved using two types of Ag-based interlayers: a Ag–Cu–In–Ti foil and a Ag–Cu–In–Ti/Cu/Ag–Cu multi-interlayer. The results showed that when only using a single Ag–Cu–In–Ti filler, the wave-shaped Fe2Ti + Ni3Ti intermetallic compounds are concentrated in the middle of the brazing seam. When adding Cu as the interlayer, the dissolution of the Cu interlayer formed a large number of Cu(s,s) blocks of different sizes in the brazing seam, which hindered the concentrated distribution of Fe2Ti + Ni3Ti intermetallic compounds in the brazing seam. As a result, Fe2Ti and Ni3Ti were dispersedly distributed in the brazing seam, increasing the shear strength of the brazed joint. The shear strength of brazed joints was increased by 82 % compared to joints brazed with a single Ag–Cu–In–Ti filler when the Cu interlayer was added.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0221","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Si3N4 and Invar alloy brazed joints were achieved using two types of Ag-based interlayers: a Ag–Cu–In–Ti foil and a Ag–Cu–In–Ti/Cu/Ag–Cu multi-interlayer. The results showed that when only using a single Ag–Cu–In–Ti filler, the wave-shaped Fe2Ti + Ni3Ti intermetallic compounds are concentrated in the middle of the brazing seam. When adding Cu as the interlayer, the dissolution of the Cu interlayer formed a large number of Cu(s,s) blocks of different sizes in the brazing seam, which hindered the concentrated distribution of Fe2Ti + Ni3Ti intermetallic compounds in the brazing seam. As a result, Fe2Ti and Ni3Ti were dispersedly distributed in the brazing seam, increasing the shear strength of the brazed joint. The shear strength of brazed joints was increased by 82 % compared to joints brazed with a single Ag–Cu–In–Ti filler when the Cu interlayer was added.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以铜箔为中间层的银铜铟锡 Si3N4/Invar 接头的界面微观结构和力学性能
摘要 使用两种类型的银基中间膜实现了 Si3N4 和英华合金钎焊接缝:一种是银-铜-铟-钛箔,另一种是银-铜-铟-钛/铜/银-铜多层中间膜。结果表明,只使用单一的银-铜-铟-钛填料时,波浪形的 Fe2Ti + Ni3Ti 金属间化合物集中在钎缝的中间。当加入 Cu 作为中间层时,Cu 中间层的溶解在钎缝中形成了大量大小不一的 Cu(s,s)块,阻碍了 Fe2Ti + Ni3Ti 金属间化合物在钎缝中的集中分布。因此,Fe2Ti 和 Ni3Ti 在钎缝中分散分布,提高了钎焊接头的抗剪强度。当加入铜中间层时,钎焊接头的剪切强度比使用单一银-铜-铟-钛填料钎焊的接头提高了 82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
期刊最新文献
Enhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm Microstructural, mechanical and nondestructive characterization of X60 grade steel pipes welded by different processes Microstructural characteristics and mechanical properties of 3D printed Kevlar fibre reinforced Onyx composite Experimental investigations and material modeling of an elastomer jaw coupling Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1