Synthesis of Mn2+ modified CdS nanoparticles and its application as catalyst in photodegradation of methyl red dye

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Chalcogenide Letters Pub Date : 2023-05-01 DOI:10.15251/cl.2023.204.251
R. Ranjan, C. M. S. Negi, K. P. Tiwary
{"title":"Synthesis of Mn2+ modified CdS nanoparticles and its application as catalyst in photodegradation of methyl red dye","authors":"R. Ranjan, C. M. S. Negi, K. P. Tiwary","doi":"10.15251/cl.2023.204.251","DOIUrl":null,"url":null,"abstract":"Photocatalytic degradation of methyl red dye using Mn(5%) doped CdS nanoparticles was studied.Mn doped CdS nanoparticles was synthesized by microwave assisted solvo thermal method where the chemicals used wereCadmium Acetate [(CH3COO)2Cd, H2O], Manganese Chloride [MnCl2.2H2O] and Sodium Sulfide [Na2S.xH2O]. X-Ray diffraction(XRD) analysis was carried out in order to analyze the structural dimensions of the synthesized nanoparticles and the average crystallite size has been calculated at the full width half maximum (FWHM) of the diffraction peaks using Debye-Scherer equation and it was found to be around2.3nm. FTIR spectra analysis was done in order to analyze different functional and vibrational groups present in the as synthesized sample of Mn doped CdSnanoparticles.The morphology of sample wasstudied by scanning electron microscope. The aqueous solution of methyl red[C15H15N3O2] has been prepared and was mixed with the as synthesized Mn doped CdSnanoparticles and was exposed for photocatalytic degradation using 100 W bulb. UV-visible spectra of the light irradiated methyl red solutions were studied at different interval of time and no red shift was observed with increase of exposure time. The intensity of the absorption peak was also found to be reduced with the increasing time interval. The photo degradation of methyl red dye was observed up to 90% at the exposure time of 90 minutes.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"4 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/cl.2023.204.251","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic degradation of methyl red dye using Mn(5%) doped CdS nanoparticles was studied.Mn doped CdS nanoparticles was synthesized by microwave assisted solvo thermal method where the chemicals used wereCadmium Acetate [(CH3COO)2Cd, H2O], Manganese Chloride [MnCl2.2H2O] and Sodium Sulfide [Na2S.xH2O]. X-Ray diffraction(XRD) analysis was carried out in order to analyze the structural dimensions of the synthesized nanoparticles and the average crystallite size has been calculated at the full width half maximum (FWHM) of the diffraction peaks using Debye-Scherer equation and it was found to be around2.3nm. FTIR spectra analysis was done in order to analyze different functional and vibrational groups present in the as synthesized sample of Mn doped CdSnanoparticles.The morphology of sample wasstudied by scanning electron microscope. The aqueous solution of methyl red[C15H15N3O2] has been prepared and was mixed with the as synthesized Mn doped CdSnanoparticles and was exposed for photocatalytic degradation using 100 W bulb. UV-visible spectra of the light irradiated methyl red solutions were studied at different interval of time and no red shift was observed with increase of exposure time. The intensity of the absorption peak was also found to be reduced with the increasing time interval. The photo degradation of methyl red dye was observed up to 90% at the exposure time of 90 minutes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mn2+修饰CdS纳米颗粒的合成及其在甲基红染料光降解中的应用
研究了Mn(5%)掺杂CdS纳米颗粒光催化降解甲基红染料。以醋酸镉[(CH3COO)2Cd, H2O]、氯化锰[MnCl2.2H2O]和硫化钠[Na2S.xH2O]为原料,采用微波辅助溶剂热法制备了Mn掺杂CdS纳米颗粒。通过x射线衍射(XRD)分析合成的纳米颗粒的结构尺寸,并利用Debye-Scherer方程计算了在衍射峰全宽半最大值处的平均晶粒尺寸,发现其约为2.3nm。通过FTIR光谱分析,分析了Mn掺杂cd纳米粒子合成样品中存在的不同官能团和振动基团。用扫描电镜观察样品的形貌。制备了甲基红[C15H15N3O2]水溶液,与合成的Mn掺杂cd纳米粒子混合,在100w灯泡下进行光催化降解。对甲基红溶液在不同时间间隔下的紫外可见光谱进行了研究,发现随着曝光时间的增加,没有观察到红移现象。吸收峰的强度也随时间间隔的增加而降低。在曝光时间为90分钟的条件下,甲基红染料的光降解率高达90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
期刊最新文献
Thermal conductivity and lattice dynamics of thermoelectric oxychalcogenide BiCuTeO Retraction notice: Optimization of chemical bath deposited CdSSe thin films Enhancement efficiency of cadmium selenium solar cell by doping within silver Steady-state and transient photocurrents of As-S-Sb-Te amorphous thin films Nucleation and growth study of SnS nanostructures prepared by electrodeposition method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1