Widad Kadhim, Dr. Mohammed A. Taha, None Haider D. Abduljabbar
{"title":"Deep Learning for Malaria Diagnosis: Leveraging Convolutional Neural Networks for Accurate Parasite Detection","authors":"Widad Kadhim, Dr. Mohammed A. Taha, None Haider D. Abduljabbar","doi":"10.31185/wjps.205","DOIUrl":null,"url":null,"abstract":"malaria is one of the most severe diseases worldwide. However, the current diagnostic method that involves examining blood smears under a microscope is unreliable and heavily relies on the examiner's expertise. Recent attempts to use deep-learning algorithms for malaria diagnosis have not produced satisfactory results. But, a new CNN-based machine learning model has been proposed in a research paper that can automatically detect and predict infected cells in thin blood smears with 94.63% accuracy. This model accurately accentuates the region of interest for the stained parasite in the images, which increases its reliability, transparency, and comprehensibility, making it suitable for deployment in healthcare settings.","PeriodicalId":167115,"journal":{"name":"Wasit Journal of Pure sciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Pure sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjps.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
malaria is one of the most severe diseases worldwide. However, the current diagnostic method that involves examining blood smears under a microscope is unreliable and heavily relies on the examiner's expertise. Recent attempts to use deep-learning algorithms for malaria diagnosis have not produced satisfactory results. But, a new CNN-based machine learning model has been proposed in a research paper that can automatically detect and predict infected cells in thin blood smears with 94.63% accuracy. This model accurately accentuates the region of interest for the stained parasite in the images, which increases its reliability, transparency, and comprehensibility, making it suitable for deployment in healthcare settings.