Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data

Mei Wyin Yaw, Prajindra Sankar Krishnan, Chai Phing Chen, Sieh Kiong Tiong
{"title":"Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data","authors":"Mei Wyin Yaw, Prajindra Sankar Krishnan, Chai Phing Chen, Sieh Kiong Tiong","doi":"10.18080/jtde.v11n3.771","DOIUrl":null,"url":null,"abstract":"According to mobility data that records mobility traffic using location trackers on mobile phones, the COVID-19 epidemic and the adoption of social distance policies have drastically altered people’s visiting patterns. However, rather than the volume of visitors, the transmission is controlled by the frequency and length of concurrent occupation at particular places. Therefore, it is essential to comprehend how people interact in various settings in order to focus legislation, guide contact tracking, and educate prevention initiatives. This study suggests an effective method for reducing the virus’s propagation among university students enrolled on-campus by creating a self-developed Google History Location Extractor and Indicator software based on actual data on people’s movements. The platform enables academics and policymakers to model the results of human mobility and the epidemic condition under various epidemic control measures and assess the potential for future advancements in the epidemic’s spread. It provides tools for identifying prospective contacts, analyzing individual infection risks, and reviewing the success of campus regulations. By more precisely focusing on probable virus carriers during the screening process, the suggested multi-functional platform makes it easier to decide on epidemic control measures, ultimately helping to manage and avoid future outbreaks.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n3.771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

According to mobility data that records mobility traffic using location trackers on mobile phones, the COVID-19 epidemic and the adoption of social distance policies have drastically altered people’s visiting patterns. However, rather than the volume of visitors, the transmission is controlled by the frequency and length of concurrent occupation at particular places. Therefore, it is essential to comprehend how people interact in various settings in order to focus legislation, guide contact tracking, and educate prevention initiatives. This study suggests an effective method for reducing the virus’s propagation among university students enrolled on-campus by creating a self-developed Google History Location Extractor and Indicator software based on actual data on people’s movements. The platform enables academics and policymakers to model the results of human mobility and the epidemic condition under various epidemic control measures and assess the potential for future advancements in the epidemic’s spread. It provides tools for identifying prospective contacts, analyzing individual infection risks, and reviewing the success of campus regulations. By more precisely focusing on probable virus carriers during the screening process, the suggested multi-functional platform makes it easier to decide on epidemic control measures, ultimately helping to manage and avoid future outbreaks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用谷歌位置数据跟踪COVID-19传播的大数据分析
利用手机上的位置追踪器记录交通流量的移动数据显示,新冠疫情和社交距离政策的实施大大改变了人们的出行模式。然而,传播是由在特定地点同时占用的频率和时间长短来控制的,而不是访问者的数量。因此,了解人们如何在各种环境中相互作用是至关重要的,以便集中立法,指导接触者追踪,并教育预防措施。本研究提出了一种有效的方法来减少病毒在在校大学生中的传播,即创建一个自主开发的基于人们运动实际数据的谷歌历史位置提取器和指示器软件。该平台使学者和政策制定者能够模拟各种流行病控制措施下人员流动和流行病状况的结果,并评估流行病传播未来取得进展的潜力。它为识别潜在接触者、分析个人感染风险以及审查校园法规的成功与否提供了工具。通过在筛查过程中更精确地关注可能的病毒携带者,建议的多功能平台更容易决定疫情控制措施,最终有助于管理和避免未来的疫情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
37
期刊介绍: The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.
期刊最新文献
Blockchain Technology for Tourism Post COVID-19 ICT-driven Transparency: Empirical Evidence from Selected Asian Countries Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data Harry S. Wragge AM (1929-2023) Phishing Message Detection Based on Keyword Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1