URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES

Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam
{"title":"URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES","authors":"Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam","doi":"10.35784/iapgos.5350","DOIUrl":null,"url":null,"abstract":"Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents. This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam, and Gandhinagar in Vijayawada (India) from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniques are applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These models are trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.","PeriodicalId":53131,"journal":{"name":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents. This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam, and Gandhinagar in Vijayawada (India) from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniques are applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These models are trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习技术的城市交通碰撞分析
在安得拉邦,交通事故的增加令人担忧。2021年,安得拉邦的道路交通事故增加了20%。该州不幸的死亡人数排名第八,在22311起交通事故中有8946人丧生,这凸显了这个问题的紧迫性。对受害者及其家属的重大经济影响强调了采取有效行动减少道路事故的必要性。本研究提出了一个框架,收集了2019年至2021年印度维杰亚瓦达的Patamata、Penamaluru、Mylavaram、Krishnalanka、Ibrahimpatnam和Gandhinagar地区的事故数据。该数据集包含超过12,000条事故数据记录。应用深度学习技术将道路交通事故的严重程度分为致命、严重和严重伤害。分类过程利用先进的神经网络模型,包括多层感知器、长短期记忆、循环神经网络和门控循环单元。这些模型在收集的数据上进行训练,以准确预测道路事故的严重程度。该项目研究为建议积极的措施和政策,以减少安得拉邦道路交通事故的严重程度和频率做出重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
40
审稿时长
10 weeks
期刊最新文献
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS PV PANEL COOLING USING STACK EFFECT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1