Effect of spiral vanes width on the separation performance of a hydrocyclone

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL Physicochemical Problems of Mineral Processing Pub Date : 2023-10-10 DOI:10.37190/ppmp/173563
Peikun Liu, Xiaoguo Wang, Lanyue Jiang, Yuekan Zhang, Xinghua Yang, Xiaoyu Li, Hui Wang
{"title":"Effect of spiral vanes width on the separation performance of a hydrocyclone","authors":"Peikun Liu, Xiaoguo Wang, Lanyue Jiang, Yuekan Zhang, Xinghua Yang, Xiaoyu Li, Hui Wang","doi":"10.37190/ppmp/173563","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of “entrainment fine particles in underflow” of hydrocyclone in grinding and classification process, a hydrocyclone with spiral vanes (the SV hydrocyclone) was proposed. The CFD techniques were used to study the pressure field, velocity field, turbulence field, particle field and classification efficiency of hydrocyclones with spiral vanes of different widths. The results show that the pressure drop, axial velocity, tangential velocity, turbulence intensity of SV hydrocyclone are reduced in different degrees compared with conventional hydrocyclone, and the reduction becomes more obvious with the increase of vane width. In the case of a vane width of 0.04D, the underflow recovery rate of 5μm and 10μm fine particles was reduced by 16.2% and 15.7%. The selection of spiral vanes with small widths is beneficial to improve the separation accuracy of fine particles and reduce the cut particle size.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"3 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ppmp/173563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of “entrainment fine particles in underflow” of hydrocyclone in grinding and classification process, a hydrocyclone with spiral vanes (the SV hydrocyclone) was proposed. The CFD techniques were used to study the pressure field, velocity field, turbulence field, particle field and classification efficiency of hydrocyclones with spiral vanes of different widths. The results show that the pressure drop, axial velocity, tangential velocity, turbulence intensity of SV hydrocyclone are reduced in different degrees compared with conventional hydrocyclone, and the reduction becomes more obvious with the increase of vane width. In the case of a vane width of 0.04D, the underflow recovery rate of 5μm and 10μm fine particles was reduced by 16.2% and 15.7%. The selection of spiral vanes with small widths is beneficial to improve the separation accuracy of fine particles and reduce the cut particle size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺旋叶片宽度对水力旋流器分离性能的影响
针对旋流器在磨矿分级过程中“底流夹带细颗粒”的问题,提出了一种螺旋叶片旋流器(SV型旋流器)。采用CFD技术对不同宽度螺旋叶片旋流器的压力场、速度场、湍流场、颗粒场及分级效率进行了研究。结果表明:与常规旋流器相比,SV型旋流器的压降、轴向速度、切向速度、湍流强度均有不同程度的减小,且随着叶片宽度的增大减小得更为明显;叶片宽度为0.04D时,5μm和10μm细颗粒的底流回收率分别降低了16.2%和15.7%。选用小宽度的螺旋叶片有利于提高细颗粒的分离精度,减小切割粒度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
期刊最新文献
Studying on mineralogical and petrological characteristics of Gara Djebilet oolitic iron ore, Tindouf (Algeria) Optimization of flotation conditions in the beneficiation of PGMs tailings On the selection of the coarsest size class in flotation rate characterizations Biochars from wood biomass as effective methylene blue adsorbents Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1