Stationary nonseparable space-time covariance functions on networks

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series B-Statistical Methodology Pub Date : 2023-09-08 DOI:10.1093/jrsssb/qkad082
Emilio Porcu, Philip A White, Marc G Genton
{"title":"Stationary nonseparable space-time covariance functions on networks","authors":"Emilio Porcu, Philip A White, Marc G Genton","doi":"10.1093/jrsssb/qkad082","DOIUrl":null,"url":null,"abstract":"Abstract The advent of data science has provided an increasing number of challenges with high data complexity. This paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or a linear network, but a generalised network (termed a graph with Euclidean edges). Additionally, data are repeatedly measured over different temporal instants. We provide new classes of stationary nonseparable space-time covariance functions where space can be a generalised network, a Euclidean tree, or a linear network, and where time can be linear or circular (seasonal). Because the construction principles are technical, we focus on illustrations that guide the reader through the construction of statistically interpretable examples. A simulation study demonstrates that the correct model can be recovered when compared to misspecified models. In addition, our simulation studies show that we effectively recover simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved model performance based on covariance specifications and network-based metrics.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"119 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad082","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The advent of data science has provided an increasing number of challenges with high data complexity. This paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or a linear network, but a generalised network (termed a graph with Euclidean edges). Additionally, data are repeatedly measured over different temporal instants. We provide new classes of stationary nonseparable space-time covariance functions where space can be a generalised network, a Euclidean tree, or a linear network, and where time can be linear or circular (seasonal). Because the construction principles are technical, we focus on illustrations that guide the reader through the construction of statistically interpretable examples. A simulation study demonstrates that the correct model can be recovered when compared to misspecified models. In addition, our simulation studies show that we effectively recover simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved model performance based on covariance specifications and network-based metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络上的平稳不可分时空协方差函数
数据科学的出现带来了越来越多的高数据复杂性的挑战。本文解决了时空数据的挑战,其中空间域不是平面,球体或线性网络,而是广义网络(称为具有欧几里得边的图)。此外,数据在不同的时间瞬间被反复测量。我们提供了一类新的平稳不可分时空协方差函数,其中空间可以是一个广义网络,欧几里得树或线性网络,其中时间可以是线性或圆形(季节性)。由于构建原则是技术性的,我们将重点放在通过构建统计上可解释的示例来指导读者的插图上。仿真研究表明,与错误的模型相比,正确的模型是可以恢复的。此外,我们的仿真研究表明,我们可以有效地恢复仿真参数。在我们的数据分析中,我们考虑了一个交通事故数据集,该数据集显示了基于协方差规范和基于网络的指标的改进的模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
期刊最新文献
Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments. Doubly robust calibration of prediction sets under covariate shift. Gradient synchronization for multivariate functional data, with application to brain connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1