{"title":"Titanium dioxide E171 consumption exacerbates <i>Listeria monocytogenes</i> infection in mice","authors":"Yue Teng, Ailin Wang, Dongyun Zhao, Guopeng Li, Longze Liu, Yue Zou, Xiaodong Xia","doi":"10.1093/fqsafe/fyad048","DOIUrl":null,"url":null,"abstract":"Abstract The food additive titanium dioxide is commonly utilized to enhance the appearance and flavor of food products. However, this substance has been linked to gastrointestinal disorders. The aim of this study was to investigate the impact of dietary exposure of titanium dioxide E171 on Listeria monocytogenes infection in mice. Mice were mainly divided to control, LM group (L. monocytogenes infection) and E171+LM group (E171 supplementation before L. monocytogenes infection). Pre-exposure to E171 resulted in increased bacterial counts in the liver, spleen, ileum, colon, mesenteric lymph nodes and feces of mice after L. monocytogenes infection. Moreover, E171 exposure increased the levels pro-inflammatory cytokines while attenuating the levels of anti-inflammatory cytokines in mice infected with L. monocytogenes. Meanwhile, mice in E171+LM group exhibited considerably more severe colonic inflammation and worse intestinal barrier function than mice in LM group. The 16S rRNA gene sequencing revealed a shift in the composition of the gut microbiota of mice in E171+LM group, characterized by a decrease in the relative abundance of Firmicutes and a decrease in the Firmicutes-to-Bacteroidetes ratio. The levels of acetate, butyrate, and isobutyrate were markedly decreased within the cecum of mice in E171+LM group in comparison to mice in LM group. In conclusion, these results suggest that E171 exposure could exacerbate L. monocytogenes infection in mice, which may provide useful information for future risk assessment of this commonly used food additive.","PeriodicalId":12427,"journal":{"name":"Food Quality and Safety","volume":"1 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Quality and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/fqsafe/fyad048","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The food additive titanium dioxide is commonly utilized to enhance the appearance and flavor of food products. However, this substance has been linked to gastrointestinal disorders. The aim of this study was to investigate the impact of dietary exposure of titanium dioxide E171 on Listeria monocytogenes infection in mice. Mice were mainly divided to control, LM group (L. monocytogenes infection) and E171+LM group (E171 supplementation before L. monocytogenes infection). Pre-exposure to E171 resulted in increased bacterial counts in the liver, spleen, ileum, colon, mesenteric lymph nodes and feces of mice after L. monocytogenes infection. Moreover, E171 exposure increased the levels pro-inflammatory cytokines while attenuating the levels of anti-inflammatory cytokines in mice infected with L. monocytogenes. Meanwhile, mice in E171+LM group exhibited considerably more severe colonic inflammation and worse intestinal barrier function than mice in LM group. The 16S rRNA gene sequencing revealed a shift in the composition of the gut microbiota of mice in E171+LM group, characterized by a decrease in the relative abundance of Firmicutes and a decrease in the Firmicutes-to-Bacteroidetes ratio. The levels of acetate, butyrate, and isobutyrate were markedly decreased within the cecum of mice in E171+LM group in comparison to mice in LM group. In conclusion, these results suggest that E171 exposure could exacerbate L. monocytogenes infection in mice, which may provide useful information for future risk assessment of this commonly used food additive.
期刊介绍:
Food quality and safety are the main targets of investigation in food production. Therefore, reliable paths to detect, identify, quantify, characterize and monitor quality and safety issues occurring in food are of great interest.
Food Quality and Safety is an open access, international, peer-reviewed journal providing a platform to highlight emerging and innovative science and technology in the agro-food field, publishing up-to-date research in the areas of food quality and safety, food nutrition and human health. It promotes food and health equity which will consequently promote public health and combat diseases.
The journal is an effective channel of communication between food scientists, nutritionists, public health professionals, food producers, food marketers, policy makers, governmental and non-governmental agencies, and others concerned with the food safety, nutrition and public health dimensions.
The journal accepts original research articles, review papers, technical reports, case studies, conference reports, and book reviews articles.