Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan
{"title":"Visualizing the spatial distribution of inflammation in the depressed brain with a targeted MRI nanoprobe in vivo","authors":"Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan","doi":"10.1038/s41427-023-00505-9","DOIUrl":null,"url":null,"abstract":"Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"24 3","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41427-023-00505-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.