Analisa Dini Gangguan Disleksia Anak Sekolah dengan Metode Backpropagation

Novi Yanti, Adil Setiawan, Sarjon Defit
{"title":"Analisa Dini Gangguan Disleksia Anak Sekolah dengan Metode Backpropagation","authors":"Novi Yanti, Adil Setiawan, Sarjon Defit","doi":"10.26418/jp.v9i2.64588","DOIUrl":null,"url":null,"abstract":"Disleksia sering disalah artikan sebagai kebodohan atau kemalasan pada anak. Gejala disleksia dikenal dengan gangguan belajar yang meliputi mengenal huruf, mengeja, membaca, dan menulis. Meskipun gejala disleksia tidak terlihat dengan jelas, kondisi ini dapat berdampak pada perkembangan pola belajar anak. Tujuan penelitian adalah untuk mengidentifikasi gejala disleksia sedini mungkin agar tidak mengganggu perkembangan belajar pada anak. Selain itu, penelitian juga bertujuan untuk mengevaluasi keakuratan teknik yang digunakan. Analisa menggunakan metode jaringan syaraf tiruan dengan teknik backpropagation dengan memberikan nilai bobot, sehingga dapat memberikan nilai input dengan benar. Penelitian menggunakan 150 dataset, 40 variabel input dan 40 lapisan tersembunyi. Keluaran yang diharapkan mencakup disleksia atau non-disleksia. Hasil implementasi dan pengujian untuk data latih dan data uji terbaik adalah 90:10. Dengan nilai epoch maksimum 5000 dan nilai error target 0,001. Metode backpropagation dapat memberikan hasil akurasi terbaik 100% pada learning rate 0,5. Sehingga metode backpropagation dapat dengan baik mendeteksi gangguan disleksia pada anak sejak dini.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v9i2.64588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disleksia sering disalah artikan sebagai kebodohan atau kemalasan pada anak. Gejala disleksia dikenal dengan gangguan belajar yang meliputi mengenal huruf, mengeja, membaca, dan menulis. Meskipun gejala disleksia tidak terlihat dengan jelas, kondisi ini dapat berdampak pada perkembangan pola belajar anak. Tujuan penelitian adalah untuk mengidentifikasi gejala disleksia sedini mungkin agar tidak mengganggu perkembangan belajar pada anak. Selain itu, penelitian juga bertujuan untuk mengevaluasi keakuratan teknik yang digunakan. Analisa menggunakan metode jaringan syaraf tiruan dengan teknik backpropagation dengan memberikan nilai bobot, sehingga dapat memberikan nilai input dengan benar. Penelitian menggunakan 150 dataset, 40 variabel input dan 40 lapisan tersembunyi. Keluaran yang diharapkan mencakup disleksia atau non-disleksia. Hasil implementasi dan pengujian untuk data latih dan data uji terbaik adalah 90:10. Dengan nilai epoch maksimum 5000 dan nilai error target 0,001. Metode backpropagation dapat memberikan hasil akurasi terbaik 100% pada learning rate 0,5. Sehingga metode backpropagation dapat dengan baik mendeteksi gangguan disleksia pada anak sejak dini.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用反宣传方法对学生阅读障碍的早期分析
诵读困难常被误解为儿童的愚蠢或懒惰。诵读困难的症状是学习障碍,包括识别字母、拼写、阅读和写作。虽然阅读障碍的症状并不明显,但它可能会影响儿童学习模式的发展。研究的目的是确定早期阅读障碍的症状,以免影响儿童的学习。此外,研究还旨在评估所使用的技术的准确性。用合成的神经组织方法进行分析,用质量值进行分析,从而得到正确的输入值。研究使用了150个数据集、40个输入变量和40个隐藏层。预期输出包括诵读困难或非诵读困难。最佳数据培训和测试的实施和测试结果为90:10。值为5000和目标0.001的误差值。反宣传方法可以提供100%最准确的学习速率0.5。因此,这种分析方法可以很好地检测儿童早期阅读障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
期刊最新文献
Optimasi Hyperparameter pada Neural Network (Studi Kasus: Identifikasi Komentar Cyberbullying Instagram) Algoritma Penanganan Constraint pada Persoalan Penjadwalan Perkuliahan Universitas di Lingkungan Pendidikan Tinggi Keagamaan Islam (PTKI) Sistem Penilaian Jawaban Singkat Otomatis pada Ujian Online Berbasis Komputer Menggunakan Algoritma Cosine Similarity Penerapan Seleksi Fitur Particle Swarm Optimization pada Klasifikasi Teks (Studi Kasus: Komentar Cyberbullying Instagram) Sistem Rekomendasi Topik Skripsi Program Studi Informatika
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1