Ashraf Hamdan Aljammal, Ahmad Qawasmeh, Ala Mughaid, Salah Taamneh, Fadi I. Wedyan, Mamoon Obiedat
{"title":"Performance Evaluation of Machine Learning Approaches in Detecting IoT-Botnet Attacks","authors":"Ashraf Hamdan Aljammal, Ahmad Qawasmeh, Ala Mughaid, Salah Taamneh, Fadi I. Wedyan, Mamoon Obiedat","doi":"10.3991/ijim.v17i19.41379","DOIUrl":null,"url":null,"abstract":"Botnets are today recognized as one of the most advanced vulnerability threats. Botnets control a huge percentage of network traffic and PCs. They have the ability to remotely control PCs (zombie machines) by their creator (BotMaster) via Command and Control (C&C) framework. They are the keys to a variety of Internet attacks such as spams, DDOS, and spreading malwares. This study proposes a number of machine learning techniques for detecting botnet assaults via IoT networks to help researchers in choosing the suitable ML algorithm for their applications. Using the BoT-IoT dataset, six different machine learning methods were evaluated: REPTree, RandomTree, RandomForest, J48, metaBagging, and Naive Bayes. Several measures, including accuracy, TPR, FPR, and many more, have been used to evaluate the algorithms’ performance. The six algorithms were evaluated using three different testing situations. Scenario-1 tested the algorithms utilizing all of the parameters presented in the BoT-IoT dataset, scenario-2 used the IG feature reduction approach, and scenario-3 used extracted features from the attacker’s received packets. The results revealed that the assessed algorithms performed well in all three cases with slight differences.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i19.41379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Botnets are today recognized as one of the most advanced vulnerability threats. Botnets control a huge percentage of network traffic and PCs. They have the ability to remotely control PCs (zombie machines) by their creator (BotMaster) via Command and Control (C&C) framework. They are the keys to a variety of Internet attacks such as spams, DDOS, and spreading malwares. This study proposes a number of machine learning techniques for detecting botnet assaults via IoT networks to help researchers in choosing the suitable ML algorithm for their applications. Using the BoT-IoT dataset, six different machine learning methods were evaluated: REPTree, RandomTree, RandomForest, J48, metaBagging, and Naive Bayes. Several measures, including accuracy, TPR, FPR, and many more, have been used to evaluate the algorithms’ performance. The six algorithms were evaluated using three different testing situations. Scenario-1 tested the algorithms utilizing all of the parameters presented in the BoT-IoT dataset, scenario-2 used the IG feature reduction approach, and scenario-3 used extracted features from the attacker’s received packets. The results revealed that the assessed algorithms performed well in all three cases with slight differences.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications