Xanthates and Dithiocarbamates: Synthesis, Characterization and Application in Flotation Processes

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Mini-reviews in Organic Chemistry Pub Date : 2023-10-10 DOI:10.2174/0118756298267964231004113212
Nadezhda V. Vchislo, Ekaterina A. Verochkina, Igor B. Rozentsveig, Alexander E. Burdonov
{"title":"Xanthates and Dithiocarbamates: Synthesis, Characterization and Application in Flotation Processes","authors":"Nadezhda V. Vchislo, Ekaterina A. Verochkina, Igor B. Rozentsveig, Alexander E. Burdonov","doi":"10.2174/0118756298267964231004113212","DOIUrl":null,"url":null,"abstract":"Abstract: It is known that flotation is the main method of extracting non-ferrous metals. The need of modern society for precious metals is constantly growing, and deposits of easily reversible ores are being depleted. Therefore, the improvement of the reagent regime and the search for new flotation reagents is an urgent task. We analyzed the literature data on the synthesis and use of common collectors such as xanthates and dithiocarbamates. Particular importance is given to recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms. Progress in the field of flotation can be made in the use of new effective reagents and their combinations, as well as in the modification of already known collectors. The generalization of the material in this review will help in the development of this area. The mini-review summarizes the syntheses of collectors such as xanthates and dithiocarbamates with the increased selective properties in the flotation process of non-ferrous metals. Furthermore, this review provides an analysis of the developments in these studies, especially highlighting recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms.","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118756298267964231004113212","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: It is known that flotation is the main method of extracting non-ferrous metals. The need of modern society for precious metals is constantly growing, and deposits of easily reversible ores are being depleted. Therefore, the improvement of the reagent regime and the search for new flotation reagents is an urgent task. We analyzed the literature data on the synthesis and use of common collectors such as xanthates and dithiocarbamates. Particular importance is given to recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms. Progress in the field of flotation can be made in the use of new effective reagents and their combinations, as well as in the modification of already known collectors. The generalization of the material in this review will help in the development of this area. The mini-review summarizes the syntheses of collectors such as xanthates and dithiocarbamates with the increased selective properties in the flotation process of non-ferrous metals. Furthermore, this review provides an analysis of the developments in these studies, especially highlighting recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄原酸盐和二硫代氨基甲酸盐:合成、表征及其在浮选中的应用
摘要:浮选是提取有色金属的主要方法。现代社会对贵金属的需求不断增长,而易于回收的矿石储量正在枯竭。因此,改善药剂制度和寻找新的浮选药剂是一项紧迫的任务。对黄原酸盐和二硫代氨基甲酸盐等常用捕收剂的合成和使用进行了文献分析。特别重视黄原酸盐和二硫代氨基甲酸盐功能化的最新进展,它们的选择特性和浮选机制。浮选领域的进展可以在使用新的有效药剂及其组合以及对已知捕收剂进行改性方面取得进展。本文对材料的归纳将有助于这一领域的发展。综述了黄原酸盐和二硫代氨基甲酸盐等捕收剂在有色金属浮选过程中选择性增强的合成情况。此外,本文还对黄原酸盐和二硫代氨基甲酸盐的功能化、选择性和浮选机理等方面的研究进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mini-reviews in Organic Chemistry
Mini-reviews in Organic Chemistry 化学-有机化学
CiteScore
4.50
自引率
4.30%
发文量
116
审稿时长
>12 weeks
期刊介绍: Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges. The journal encourages submission of reviews on emerging fields of organic chemistry including: Bioorganic Chemistry Carbohydrate Chemistry Chemical Biology Chemical Process Research Computational Organic Chemistry Development of Synthetic Methodologies Functional Organic Materials Heterocyclic Chemistry Macromolecular Chemistry Natural Products Isolation And Synthesis New Synthetic Methodology Organic Reactions Organocatalysis Organometallic Chemistry Theoretical Organic Chemistry Polymer Chemistry Stereochemistry Structural Investigations Supramolecular Chemistry
期刊最新文献
Research Progress on Compounds with Antioxidant Activity Derived from Microorganisms Synthesis of Indazole Scaffolds from Arynes and Suitable Coupling Partners - A Brief Review Multifunctional Smart Nano Biopolymers for Programmed Controlled Release of Biomolecules and Therapeutic Agents: An Overview on Modern Emerging Systems A Comprehensive Review on History, Sources, Biosynthesis, Chemical Synthesis and Applications of Stilbenes Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Imidazole Alkaloids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1