{"title":"Structural, electronic, elastic, and optical properties of chalcogenide perovskite SrZrS3 under ambient and high-pressure conditions","authors":"M. L. Han, Y. Hu","doi":"10.15251/cl.2023.208.619","DOIUrl":null,"url":null,"abstract":"Hydrostatic pressure is an effective tool that can give rise to novel crystal structures and physical properties. In this paper, we perform the first-principles calculation based on density-functional theory (DFT) to study the structural, electronic, elastic, and optical properties of chalcogenide perovskite SrZrS3 under pressure. The results indicated that both the lattice constant and cell volume decrease with the increase of pressure, which are matched well with available previous values. The obtained elastic constants reveal the SrZrS3 is mechanically stable between 0 and 15 GPa. Additionally, the main features of the valence and conduction bands have been analyzed from the total and partial density of states. The complex dielectric function, refractive index, absorption coefficient, reflectivity, and the extinction coefficient are also calculated and analyzed. According to our work, we found that the optical properties of SrZrS3 undergo a red shift with increasing pressure.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"89 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/cl.2023.208.619","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrostatic pressure is an effective tool that can give rise to novel crystal structures and physical properties. In this paper, we perform the first-principles calculation based on density-functional theory (DFT) to study the structural, electronic, elastic, and optical properties of chalcogenide perovskite SrZrS3 under pressure. The results indicated that both the lattice constant and cell volume decrease with the increase of pressure, which are matched well with available previous values. The obtained elastic constants reveal the SrZrS3 is mechanically stable between 0 and 15 GPa. Additionally, the main features of the valence and conduction bands have been analyzed from the total and partial density of states. The complex dielectric function, refractive index, absorption coefficient, reflectivity, and the extinction coefficient are also calculated and analyzed. According to our work, we found that the optical properties of SrZrS3 undergo a red shift with increasing pressure.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.