The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen Achromobacter xylosoxidans.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2024-12-01 Epub Date: 2024-10-29 DOI:10.1080/21505594.2023.2284513
S M Hossein Khademi, Cecilia Sahl, Lotta Happonen, Åke Forsberg, Lisa I Påhlman
{"title":"The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen <i>Achromobacter xylosoxidans</i>.","authors":"S M Hossein Khademi, Cecilia Sahl, Lotta Happonen, Åke Forsberg, Lisa I Påhlman","doi":"10.1080/21505594.2023.2284513","DOIUrl":null,"url":null,"abstract":"<p><p><i>Achromobacter xylosoxidans</i> is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in <i>A. xylosoxidans</i>. Putative Tat substrates in <i>A.</i> <i>xylosoxidans</i> were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic <i>tatC</i> deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC <i>A.</i> <i>xylosoxidans</i> were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analysed using liquid chromatography-mass spectrometry (LC-MS/MS). A total of 128 putative Tat substrates were identified in the <i>A.</i> <i>xylosoxidans</i> proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in <i>A.</i> <i>xylosoxidans</i>.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":" ","pages":"2284513"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2023.2284513","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Achromobacter xylosoxidans is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in A. xylosoxidans. Putative Tat substrates in A. xylosoxidans were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic tatC deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC A. xylosoxidans were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analysed using liquid chromatography-mass spectrometry (LC-MS/MS). A total of 128 putative Tat substrates were identified in the A. xylosoxidans proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in A. xylosoxidans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双精氨酸易位系统对囊性纤维化病原体木糖氧化无色杆菌的细胞粘附和铁的摄取至关重要。
背景:氧化木糖无色杆菌是一种可引起囊性纤维化患者气道感染的新兴病原体。对这种细菌的毒力因子和蛋白质分泌系统的了解是有限的。双精氨酸易位(Tat)是一种蛋白质分泌系统,可在革兰氏阴性菌的细胞膜内转运折叠蛋白。它已被证明对许多不同细菌物种的毒力和细胞过程很重要。本研究旨在探讨Tat在木犀草铁代谢和寄主细胞粘附中的作用。方法:利用TatFind、TatP和PRED-Tat预测工具对木索酸a中推测的Tat底物进行鉴定。产生了一个等基因tatC缺失突变体(ΔtatC)并进行了表型表征。将野生型和ΔtatC木犀草分为细胞质、膜和质周三个部分,采用液相色谱-质谱联用(LC-MS/MS)分析不同部分的蛋白组表达。结果:在木犀草蛋白质组中共鉴定出128个推测的Tat底物。ΔtatC突变体显示宿主细胞粘附、生长速率和铁获取减弱。20个预测的Tat底物被鉴定为质周室的表达蛋白,其中9个与野生型相关。结论:木犀草的Tat分泌在铁获取和宿主细胞粘附中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Detoxified pneumolysin derivative ΔA146Ply inhibits triple- negative breast cancer metastasis mainly via mannose receptor-mediated autophagy inhibition. The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen Achromobacter xylosoxidans. Dry eye disease caused by viral infection: Past, present and future. The host protein CALCOCO2 interacts with bovine viral diarrhoea virus Npro, inhibiting type I interferon production and thereby promoting viral replication. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1