Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2025-12-01 Epub Date: 2024-12-28 DOI:10.1080/21505594.2024.2440541
Yuefei Jin, Wangquan Ji, Liang Zhang, Dejian Dang, Bingqing Yu, Xiaolong Zhang, Yuxiang Zhang, Jiaqi Li, Yaodong Zhang, Rongxin Yang, Haiyan Yang, Shuaiyin Chen, Fang Wang, Guangcai Duan
{"title":"Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease.","authors":"Yuefei Jin, Wangquan Ji, Liang Zhang, Dejian Dang, Bingqing Yu, Xiaolong Zhang, Yuxiang Zhang, Jiaqi Li, Yaodong Zhang, Rongxin Yang, Haiyan Yang, Shuaiyin Chen, Fang Wang, Guangcai Duan","doi":"10.1080/21505594.2024.2440541","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild, <i>n</i> = 42; severe, <i>n</i> = 43) and healthy controls (<i>n</i> = 25). Brain tissues from CVA6-infected mice were examined using untargeted metabolomics. Several amino acids were significantly different between the three groups. Pathway analysis revealed that arginine, proline, and tryptophan metabolism are implicated in the pathogenesis of HFMD. A similar arginine depletion was observed in the brain tissues of CVA6-infected mice. Importantly, L-arginine supplementation improved the survival rate of CVA6-infected mice, inhibited virus multiplication, and reduced pathological autophagy associated with mTOR-autophagy pathway in the brain. Collectively, arginine, as the hub amino acid metabolite of the mammalian target of rapamycin (mTOR) signaling pathway affecting autophagy, plays an important role in the pathogenesis of severe HFMD. L-arginine supplementation may serve as a potential therapeutic option for critical patients with HFMD.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2440541"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2440541","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild, n = 42; severe, n = 43) and healthy controls (n = 25). Brain tissues from CVA6-infected mice were examined using untargeted metabolomics. Several amino acids were significantly different between the three groups. Pathway analysis revealed that arginine, proline, and tryptophan metabolism are implicated in the pathogenesis of HFMD. A similar arginine depletion was observed in the brain tissues of CVA6-infected mice. Importantly, L-arginine supplementation improved the survival rate of CVA6-infected mice, inhibited virus multiplication, and reduced pathological autophagy associated with mTOR-autophagy pathway in the brain. Collectively, arginine, as the hub amino acid metabolite of the mammalian target of rapamycin (mTOR) signaling pathway affecting autophagy, plays an important role in the pathogenesis of severe HFMD. L-arginine supplementation may serve as a potential therapeutic option for critical patients with HFMD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精氨酸耗竭诱导的自噬和代谢失调与手足口病的严重程度有关。
氨基酸代谢为许多病毒性疾病的发展和预防提供了重要的见解。因此,本研究旨在比较手足口病(手足口病)患者与健康个体的氨基酸谱,进一步揭示手足口病严重程度的分子机制。采用UPLC-MS/MS检测小儿手足口病患者血浆氨基酸表达谱(轻度,n = 42;重症患者(n = 43)和健康对照组(n = 25)。采用非靶向代谢组学方法检测cva6感染小鼠的脑组织。有几个氨基酸在三组之间存在显著差异。途径分析显示精氨酸、脯氨酸和色氨酸的代谢与手足口病的发病机制有关。在cva6感染小鼠的脑组织中观察到类似的精氨酸消耗。重要的是,补充l -精氨酸可提高cva6感染小鼠的存活率,抑制病毒增殖,并减少脑内与mtor自噬途径相关的病理性自噬。综上所述,精氨酸作为影响自噬的雷帕霉素(rapamycin, mTOR)信号通路的中枢氨基酸代谢物,在严重手足口病的发病过程中起着重要作用。补充l -精氨酸可作为手足口病危重患者的潜在治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Emerging West African Genotype Chikungunya Virus in Mosquito Virome. Are Escherichia coli causing recurrent cystitis just ordinary uropathogenic E. coli (UPEC) strains? Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Effect of COVID-19 infection on thyroid function status and clinical indexes among hypothyroid outpatients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1