Construcción de mapas articulatorios para la detección automática de la enfermedad de Parkinson por medio de la voz

Surley Yansury Berrio-Zapata , Juan Rafael Orozco-Arroyave
{"title":"Construcción de mapas articulatorios para la detección automática de la enfermedad de Parkinson por medio de la voz","authors":"Surley Yansury Berrio-Zapata ,&nbsp;Juan Rafael Orozco-Arroyave","doi":"10.1016/j.rlfa.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives</h3><p>Recent studies have shown that speech analysis provides relevant information to support the diagnosis and monitoring of patients suffering from Parkinson's disease (PD). In this work a methodology is proposed to create articulatory maps based on articulatory and phonological information such that allow a clear and interpretable visualization of the results.</p></div><div><h3>Materials and methods</h3><p>A total of 100 speakers were recorded while reading a text with 36 words that includes all phonemes of the Colombian Spanish. Phonological features are extracted with two toolkits: PhonVoc and Phonet. Forced alignment is used to obtained the time-stamps per phoneme. Support vector machines and random forests are used to classify between PD patients and non-symptomatic subjects.</p></div><div><h3>Results</h3><p>Accuracies of up to 90% are observed when the phonological class «Vowels» is considered and also accuracies above 80% are found for «Nasals», «Voiceless ficatives» and «Voiced Stop». Articulatory maps are created based on Gaussian mixture models with the aim to enable the interpretation of results.</p></div><div><h3>Conclusions</h3><p>The proposed methodology is suitable for the automatic detection of PD and also to assess possible articulatory deficits in the production of specific phonological classes.</p></div>","PeriodicalId":56174,"journal":{"name":"Revista de Logopedia, Foniatria y Audiologia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Logopedia, Foniatria y Audiologia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0214460322000365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives

Recent studies have shown that speech analysis provides relevant information to support the diagnosis and monitoring of patients suffering from Parkinson's disease (PD). In this work a methodology is proposed to create articulatory maps based on articulatory and phonological information such that allow a clear and interpretable visualization of the results.

Materials and methods

A total of 100 speakers were recorded while reading a text with 36 words that includes all phonemes of the Colombian Spanish. Phonological features are extracted with two toolkits: PhonVoc and Phonet. Forced alignment is used to obtained the time-stamps per phoneme. Support vector machines and random forests are used to classify between PD patients and non-symptomatic subjects.

Results

Accuracies of up to 90% are observed when the phonological class «Vowels» is considered and also accuracies above 80% are found for «Nasals», «Voiceless ficatives» and «Voiced Stop». Articulatory maps are created based on Gaussian mixture models with the aim to enable the interpretation of results.

Conclusions

The proposed methodology is suitable for the automatic detection of PD and also to assess possible articulatory deficits in the production of specific phonological classes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过声音自动检测帕金森病的发音图构建
背景与目的近年来的研究表明,语音分析为帕金森病(PD)患者的诊断和监测提供了相关信息。在这项工作中,提出了一种方法来创建基于发音和语音信息的发音地图,这样可以使结果清晰和可解释的可视化。材料和方法总共有100名说话者在阅读一篇包含哥伦比亚西班牙语所有音素的36个单词的文章时被录音。语音特征提取使用两个工具包:PhonVoc和Phonet。采用强制对齐的方法获取每个音素的时间戳。使用支持向量机和随机森林对PD患者和无症状受试者进行分类。结果当考虑语音类“元音”时,准确率高达90%,而“鼻音”、“不发音的虚构词”和“浊音顿音”的准确率也在80%以上。衔接图是基于高斯混合模型创建的,目的是使结果能够解释。结论所提出的方法适用于PD的自动检测,也适用于评估在产生特定语音类别时可能出现的发音缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
28
期刊最新文献
Estilos de afrontamiento de padres de niños con fisura labio-alveolo-palatina en los Andes Centrales del Ecuador (Cuenca-Ambato) Dos medidas de producción fonológica para la identificación de comorbilidad en los trastornos de los sonidos del habla en niños mexicanos Marc Monfort o la centralidad psicológica del lenguaje en la Logopedia (y viceversa) M. Monfort: hacer y enseñar logopedia Reading comprehension skills in children with language development disorder—Systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1