Fuzzy clustering based transition region extraction for image segmentation

Priyadarsan Parida
{"title":"Fuzzy clustering based transition region extraction for image segmentation","authors":"Priyadarsan Parida","doi":"10.1016/j.fcij.2018.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Transition region based approaches are recent hybrid segmentation techniques well known for its simplicity and effectiveness. Here, the segmentation effectiveness depends on robust extraction of transition regions. So, we have proposed clustering approach based transition region extraction method for image segmentation. The proposed method initially uses the local variance of the input image to get the variance feature image. Fuzzy C-means clustering is applied to the variance feature image to separate the transitional features from the feature image. Further, Otsu thresholding is applied to the transitional feature image to extract the transition region. For extracting the exact edge image, morphological thinning operation is performed. The edge image extracted in former step is closed in nature. The morphological cleaning and region filling operation is performed on an edge image to get the object regions. Finally, objects are extracted via these object regions. The proposed method is compared with different image segmentation methods. An experimental result reveals that the proposed method outperforms other methods for segmentation of images containing single and multiple objects.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 2","pages":"Pages 321-333"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.10.002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728818300023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transition region based approaches are recent hybrid segmentation techniques well known for its simplicity and effectiveness. Here, the segmentation effectiveness depends on robust extraction of transition regions. So, we have proposed clustering approach based transition region extraction method for image segmentation. The proposed method initially uses the local variance of the input image to get the variance feature image. Fuzzy C-means clustering is applied to the variance feature image to separate the transitional features from the feature image. Further, Otsu thresholding is applied to the transitional feature image to extract the transition region. For extracting the exact edge image, morphological thinning operation is performed. The edge image extracted in former step is closed in nature. The morphological cleaning and region filling operation is performed on an edge image to get the object regions. Finally, objects are extracted via these object regions. The proposed method is compared with different image segmentation methods. An experimental result reveals that the proposed method outperforms other methods for segmentation of images containing single and multiple objects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊聚类的图像分割过渡区域提取
基于过渡区域的分割方法是一种新的混合分割方法,以其简单有效而著称。在这里,分割的有效性取决于对过渡区域的鲁棒提取。为此,我们提出了基于聚类方法的过渡区域提取方法用于图像分割。该方法首先利用输入图像的局部方差得到方差特征图像。对方差特征图像进行模糊c均值聚类,从特征图像中分离出过渡特征。进一步,对过渡特征图像进行Otsu阈值分割,提取过渡区域。为了准确提取边缘图像,进行了形态学细化操作。前一步提取的边缘图像本质上是封闭的。对边缘图像进行形态学清洗和区域填充操作,得到目标区域。最后,通过这些对象区域提取对象。将该方法与不同的图像分割方法进行了比较。实验结果表明,该方法在包含单个和多个目标的图像分割方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1