Using proteomics for stratification and risk prediction in patients with solid tumors.

Pathologie (Heidelberg, Germany) Pub Date : 2023-12-01 Epub Date: 2023-11-24 DOI:10.1007/s00292-023-01261-x
Tilman Werner, Matthias Fahrner, Oliver Schilling
{"title":"Using proteomics for stratification and risk prediction in patients with solid tumors.","authors":"Tilman Werner, Matthias Fahrner, Oliver Schilling","doi":"10.1007/s00292-023-01261-x","DOIUrl":null,"url":null,"abstract":"<p><p>Proteomics, the study of proteins and their functions, has greatly evolved due to advances in analytical chemistry and computational biology. Unlike genomics or transcriptomics, proteomics captures the dynamic and diverse nature of proteins, which play crucial roles in cellular processes. This is exemplified in cancer, where genomic and transcriptomic information often falls short in reflecting actual protein expression and interactions. Liquid chromatography-mass spectrometry (LC-MS) is pivotal in proteomic data generation, enabling high-throughput analysis of protein samples. The MS-based workflow involves protein digestion, chromatographic separation, ionization, and fragmentation, leading to peptide identification and quantification. Computational biostatistics, particularly using tools in R (R Foundation for Statistical Computing, Vienna, Austria; www.R-project.org ), aid in data analysis, revealing protein expression patterns and correlations with clinical variables. Proteomic studies can be explorative, aiming to characterize entire proteomes, or targeted, focusing on specific proteins of interest. The integration of proteomics with genomics addresses database limitations and enhances peptide identification. Case studies in intrahepatic cholangiocarcinoma, glioblastoma multiforme, and pancreatic ductal adenocarcinoma highlight proteomics' clinical applications, from subtyping cancers to identifying diagnostic markers. Moreover, proteomic data augment molecular tumor boards by providing deeper insights into pathway activities and genomic mutations, supporting personalized treatment decisions. Overall, proteomics contributes significantly to advancing our understanding of cellular biology and improving clinical care.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":"176-182"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-023-01261-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proteomics, the study of proteins and their functions, has greatly evolved due to advances in analytical chemistry and computational biology. Unlike genomics or transcriptomics, proteomics captures the dynamic and diverse nature of proteins, which play crucial roles in cellular processes. This is exemplified in cancer, where genomic and transcriptomic information often falls short in reflecting actual protein expression and interactions. Liquid chromatography-mass spectrometry (LC-MS) is pivotal in proteomic data generation, enabling high-throughput analysis of protein samples. The MS-based workflow involves protein digestion, chromatographic separation, ionization, and fragmentation, leading to peptide identification and quantification. Computational biostatistics, particularly using tools in R (R Foundation for Statistical Computing, Vienna, Austria; www.R-project.org ), aid in data analysis, revealing protein expression patterns and correlations with clinical variables. Proteomic studies can be explorative, aiming to characterize entire proteomes, or targeted, focusing on specific proteins of interest. The integration of proteomics with genomics addresses database limitations and enhances peptide identification. Case studies in intrahepatic cholangiocarcinoma, glioblastoma multiforme, and pancreatic ductal adenocarcinoma highlight proteomics' clinical applications, from subtyping cancers to identifying diagnostic markers. Moreover, proteomic data augment molecular tumor boards by providing deeper insights into pathway activities and genomic mutations, supporting personalized treatment decisions. Overall, proteomics contributes significantly to advancing our understanding of cellular biology and improving clinical care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蛋白质组学对实体瘤患者进行分层和风险预测。
由于分析化学和计算生物学的进步,研究蛋白质及其功能的蛋白质组学得到了很大的发展。与基因组学或转录组学不同,蛋白质组学捕获蛋白质的动态和多样性,蛋白质在细胞过程中起着至关重要的作用。在癌症中,基因组和转录组信息往往不能反映实际的蛋白质表达和相互作用。液相色谱-质谱(LC-MS)是蛋白质组学数据生成的关键,使蛋白质样品的高通量分析成为可能。基于质谱的工作流程包括蛋白质消化、色谱分离、电离和碎片化,从而导致肽的鉴定和定量。计算生物统计学,特别是使用R中的工具(R统计计算基金会,维也纳,奥地利;www.R-project.org),有助于数据分析,揭示蛋白质表达模式及其与临床变量的相关性。蛋白质组学研究可以是探索性的,旨在表征整个蛋白质组,或者是针对性的,专注于感兴趣的特定蛋白质。蛋白质组学与基因组学的整合解决了数据库的限制,并增强了肽的识别。肝内胆管癌、多形性胶质母细胞瘤和胰腺导管腺癌的病例研究突出了蛋白质组学的临床应用,从亚型癌症到识别诊断标记。此外,蛋白质组学数据通过提供对途径活动和基因组突变的更深入了解来增强分子肿瘤板,支持个性化治疗决策。总的来说,蛋白质组学有助于提高我们对细胞生物学的理解和改善临床护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Molecular testing in mesenchymal neoplasms: What, when, and how to test? : A review with a special focus on the value of next-generation immunochemistry as a substitute for molecular testing]. [Ecological sustainability of deep learning in pathology : A modeling study]. Key considerations when implementing new diagnostic technologies in routine practice. Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms. [Microsatellite instability-What should be considered in routine examinations?]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1