Issue Information

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2023-11-24 DOI:10.1111/mec.16529
{"title":"Issue Information","authors":"","doi":"10.1111/mec.16529","DOIUrl":null,"url":null,"abstract":"<p><b>Cover Illustrations:</b> (Left to Right): (image 1) A conceptual figure illustrating the structure of the iBioGen model; (image 2) High resolution image depicting a diverse beetle community from a soil litter sample of the narrow endemic Cyprus cedar (<i>Cedrus brevifolia</i>); (image 3) Cloud forest of the Anaga Peninsula (Island of Tenerife, Canary Islands, Spain); (image 4) A beetle in subtropical forest in Asia. In this issue, Li et al. generated a dataset of 10,524 barcoded beetles from year-long, weekly samping across both elevational and latitudinal gradients in Gaoligongshan, China; (image 5) Male Xylocopa sonorina on a flower; (image 6) Kettle hole metacommunity in an agricultural landscape in northeastern Germany; (image 7) Zooplankton collected along the east coast of South Africa; (image 8) Species rich seaweed community from the Koster archipelago, Sweden; (image 9) A pristine island in the Faafu Atholl in the Maldives where many plants and pollinators interact with each other; (image 10) Illustration of various methods that can be used to monitor coral spawning, such as visual survey with SCUBA (far right), collection cups and nets placed over spawning colonies for direct sampling of coral gametes (bottom left), and sampling seawater for environmental DNA (eDNA, middle). eDNA is potentially a less invasive approach for studying coral spawning events; (image 11) Honeybees on comb. The top of the picture shows an area of capped honey stores, covered with a layer of white wax. In the middle of the comb the honeybees are laying down honey and pollen stores. At the bottom, there is an area of brood. Most of the honeybees in the picture are female workers, but there are also a small number of larger, male drones, with much larger eyes; (image 12) A queen Bombus terricola forages on common selfheal. This species has experienced population decline and range contraction in recent decades. New methods for interrogating plant pollinator interactions, such as pollen metabarcoding, show promise for improving our understanding of how the dietary niche of pollinators varies in response to global environmental change; (image 13) A juvenile female Grauer’s gorilla (<i>Gorilla beringei graueri</i>) feeding on <i>Tacazzea</i> in Kahuzi-Biega National Park, Democratic Republic of Congo; (image 14) Photo of Site 15470, a historic shipwreck located in the northern Gulf of Mexico; (image 15) Close up view of warm shimmering fluid rising from the subsurface at the Von Damm hydrothermal vent field; (image 16) Picture of a weedy Ampullaceana balthica in a temporal freshwater pond on the Estonian Baltic Sea coast; (image 17) Holometabolous insects, such as this edible mealworm beetle, have much higher gut microbiota turnover during development than their hemimetabolous cousins. The reason is the reorganization of the body during pupation; (image 18) Photo of a Hawai 'i 'Amakihi (Chlorodrepanis virens); (image 19) Web of a Hawaiian endemic spider (undescribed <i>Tetragnatha species</i>) in the native forest at Army Road, Pu'u Maka'ala Natural Area Reserve, Big Island of Hawaii; (image 20) Doliolid (D. gegenbauri) nurse surrounded by hyperiid amphipods and plankton. Photo taken during a black water dive off the coast of West Palm Beach, Florida, USA; (image 21) Ecological specialization increases steadily over evolutionary time. The illustration shows <i>Eupithecia</i> caterpillar, part of a radiation of moths endemic to the Hawaiian Islands, feeding on a native insect; (image 22) <i>Parashorea chinensis</i> (Dipterocarpaceae) in bloom showing Yellow-green canopy; (image 23) Macrofaunal diversity and encrustation on ARMS have a positive relationship with coral cover. High coral cover sites have high habitat complexity, hence more crevices and cavities in the reef matrix that provide microhabitats and refugia for reef associates, especially larger-sized metazoan species. ARMS mimic the three-dimensional structure of the reef, so these larger-sized reef associates may utilise ARMS in a similar manner. Microbial communities are relatively homogenous among sites of varying coral cover. Therefore, ARMS deployed at high coral cover sites have increased encrustation with higher diversity of metazoan macrofauna but lower diversity of microbes; (image 24) Predicted soil β-diversity distribution of soil bacteria across the state of New South Wales mapped at 1,000 m resolution; (image 25) DNA metabarcoding can be used for exausstive community ecology of many environments, including freshwater, terrestrial ecosystems and glacier-related environments; (image 26) Scanning electron microscope (SEM) images of Emiliania huxleyi superimposed on a satellite image of an E. huxleyi bloom in the North Atlantic Ocean (off the coast of France) from 12 June, 2003; (image 27) The parasitoid wasp, <i>Ganaspis cf. brasilliensis</i>, grooms itself atop a <i>Drosphila</i>-infested berry; (image 28) Reproductive manipulation in the triangle: Asobara japonica - Wolbachia - host microbial community; (image 29) iDNA from fly feces and regurgitates reveals fly vertebrate interactions; (image 30) Patches of grouped mortality in a high altitude stand of Nothofagus pumilio in Northern Patagonia; (image 31) Predatory wasp Passaloecus sp. bringing aphid prey into trap nest; (image 32) Detecting vertical transmission in host-microbiota systems using cophylogenetic approaches; (image 33) Fly pollinating Celmisia flower in Charlotte Pass, Kosciuszko National Park; (image 34) Green-winged Teal (Anas crecca) foraging in a lotus field around the Lake Kasumigaura, Japan.</p><p><b>Photo Credit:</b> (image 1) Emmanouil Meramveliotakis; (image 2) Víctor Noguerales; (image 3) Javier Morente-López; (image 4) Wa Da; (image 5) Kathy Keatley Garvey; (image 6) Jan Pufelski; (image 7) Ashrenee Govender; (image 8) Sophie Steinhagen; (image 9) Paolo Biella; (image 10) Aden Ip; (image 11) Natasha de Vere; (image 12) Rodney Richardson; (image 13) Neetha Iyer; (image 14) Photo taken by ROV <i>Odysessus</i> (Pelagic Research Services); (image 15) Jeffrey S. Seewald &amp; WHOI; (image 16) Daniel Herlemann; (image 17) Richard Naylor; (image 18) Amanda K. Navine; (image 19) Susan Kennedy; (image 20) Richard A. Collins; (image 21) Karl Magnacca; (image 22) Yun Deng; (image 23) Yin Cheong Aden Ip; (image 24) Vanessa Pino; (image 25) G.F. Ficetola; (image 26) Satellite Image courtesy of Jeff Schmaltz, MODIS Rapid Response Team, NASA GSFC; SEM photo by El Mahdi-Bendif; (image 27) Warren H. L. Wong; (image 28) Pina Brinker; (image 29) Nick Baker, Maimon Hussin, Leshon Lee; (image 30) Lucía Molina; (image 31) Dr. Felix Fornoff; (image 32) Benoît Perez-Lamarque; (image 33) Liz Milla; (image 34) Reiko Saito.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.16529","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.16529","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cover Illustrations: (Left to Right): (image 1) A conceptual figure illustrating the structure of the iBioGen model; (image 2) High resolution image depicting a diverse beetle community from a soil litter sample of the narrow endemic Cyprus cedar (Cedrus brevifolia); (image 3) Cloud forest of the Anaga Peninsula (Island of Tenerife, Canary Islands, Spain); (image 4) A beetle in subtropical forest in Asia. In this issue, Li et al. generated a dataset of 10,524 barcoded beetles from year-long, weekly samping across both elevational and latitudinal gradients in Gaoligongshan, China; (image 5) Male Xylocopa sonorina on a flower; (image 6) Kettle hole metacommunity in an agricultural landscape in northeastern Germany; (image 7) Zooplankton collected along the east coast of South Africa; (image 8) Species rich seaweed community from the Koster archipelago, Sweden; (image 9) A pristine island in the Faafu Atholl in the Maldives where many plants and pollinators interact with each other; (image 10) Illustration of various methods that can be used to monitor coral spawning, such as visual survey with SCUBA (far right), collection cups and nets placed over spawning colonies for direct sampling of coral gametes (bottom left), and sampling seawater for environmental DNA (eDNA, middle). eDNA is potentially a less invasive approach for studying coral spawning events; (image 11) Honeybees on comb. The top of the picture shows an area of capped honey stores, covered with a layer of white wax. In the middle of the comb the honeybees are laying down honey and pollen stores. At the bottom, there is an area of brood. Most of the honeybees in the picture are female workers, but there are also a small number of larger, male drones, with much larger eyes; (image 12) A queen Bombus terricola forages on common selfheal. This species has experienced population decline and range contraction in recent decades. New methods for interrogating plant pollinator interactions, such as pollen metabarcoding, show promise for improving our understanding of how the dietary niche of pollinators varies in response to global environmental change; (image 13) A juvenile female Grauer’s gorilla (Gorilla beringei graueri) feeding on Tacazzea in Kahuzi-Biega National Park, Democratic Republic of Congo; (image 14) Photo of Site 15470, a historic shipwreck located in the northern Gulf of Mexico; (image 15) Close up view of warm shimmering fluid rising from the subsurface at the Von Damm hydrothermal vent field; (image 16) Picture of a weedy Ampullaceana balthica in a temporal freshwater pond on the Estonian Baltic Sea coast; (image 17) Holometabolous insects, such as this edible mealworm beetle, have much higher gut microbiota turnover during development than their hemimetabolous cousins. The reason is the reorganization of the body during pupation; (image 18) Photo of a Hawai 'i 'Amakihi (Chlorodrepanis virens); (image 19) Web of a Hawaiian endemic spider (undescribed Tetragnatha species) in the native forest at Army Road, Pu'u Maka'ala Natural Area Reserve, Big Island of Hawaii; (image 20) Doliolid (D. gegenbauri) nurse surrounded by hyperiid amphipods and plankton. Photo taken during a black water dive off the coast of West Palm Beach, Florida, USA; (image 21) Ecological specialization increases steadily over evolutionary time. The illustration shows Eupithecia caterpillar, part of a radiation of moths endemic to the Hawaiian Islands, feeding on a native insect; (image 22) Parashorea chinensis (Dipterocarpaceae) in bloom showing Yellow-green canopy; (image 23) Macrofaunal diversity and encrustation on ARMS have a positive relationship with coral cover. High coral cover sites have high habitat complexity, hence more crevices and cavities in the reef matrix that provide microhabitats and refugia for reef associates, especially larger-sized metazoan species. ARMS mimic the three-dimensional structure of the reef, so these larger-sized reef associates may utilise ARMS in a similar manner. Microbial communities are relatively homogenous among sites of varying coral cover. Therefore, ARMS deployed at high coral cover sites have increased encrustation with higher diversity of metazoan macrofauna but lower diversity of microbes; (image 24) Predicted soil β-diversity distribution of soil bacteria across the state of New South Wales mapped at 1,000 m resolution; (image 25) DNA metabarcoding can be used for exausstive community ecology of many environments, including freshwater, terrestrial ecosystems and glacier-related environments; (image 26) Scanning electron microscope (SEM) images of Emiliania huxleyi superimposed on a satellite image of an E. huxleyi bloom in the North Atlantic Ocean (off the coast of France) from 12 June, 2003; (image 27) The parasitoid wasp, Ganaspis cf. brasilliensis, grooms itself atop a Drosphila-infested berry; (image 28) Reproductive manipulation in the triangle: Asobara japonica - Wolbachia - host microbial community; (image 29) iDNA from fly feces and regurgitates reveals fly vertebrate interactions; (image 30) Patches of grouped mortality in a high altitude stand of Nothofagus pumilio in Northern Patagonia; (image 31) Predatory wasp Passaloecus sp. bringing aphid prey into trap nest; (image 32) Detecting vertical transmission in host-microbiota systems using cophylogenetic approaches; (image 33) Fly pollinating Celmisia flower in Charlotte Pass, Kosciuszko National Park; (image 34) Green-winged Teal (Anas crecca) foraging in a lotus field around the Lake Kasumigaura, Japan.

Photo Credit: (image 1) Emmanouil Meramveliotakis; (image 2) Víctor Noguerales; (image 3) Javier Morente-López; (image 4) Wa Da; (image 5) Kathy Keatley Garvey; (image 6) Jan Pufelski; (image 7) Ashrenee Govender; (image 8) Sophie Steinhagen; (image 9) Paolo Biella; (image 10) Aden Ip; (image 11) Natasha de Vere; (image 12) Rodney Richardson; (image 13) Neetha Iyer; (image 14) Photo taken by ROV Odysessus (Pelagic Research Services); (image 15) Jeffrey S. Seewald & WHOI; (image 16) Daniel Herlemann; (image 17) Richard Naylor; (image 18) Amanda K. Navine; (image 19) Susan Kennedy; (image 20) Richard A. Collins; (image 21) Karl Magnacca; (image 22) Yun Deng; (image 23) Yin Cheong Aden Ip; (image 24) Vanessa Pino; (image 25) G.F. Ficetola; (image 26) Satellite Image courtesy of Jeff Schmaltz, MODIS Rapid Response Team, NASA GSFC; SEM photo by El Mahdi-Bendif; (image 27) Warren H. L. Wong; (image 28) Pina Brinker; (image 29) Nick Baker, Maimon Hussin, Leshon Lee; (image 30) Lucía Molina; (image 31) Dr. Felix Fornoff; (image 32) Benoît Perez-Lamarque; (image 33) Liz Milla; (image 34) Reiko Saito.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
问题信息
封面插图:(从左至右):(图1)说明iBioGen模型结构的概念图;(图2)高分辨率图像,描绘了狭窄的塞浦路斯特有雪松(Cedrus brevifolia)土壤凋落物样本中的多种甲虫群落;(图3)阿纳加半岛(西班牙加那利群岛特内里费岛)的云雾森林;(图4)亚洲亚热带森林中的一只甲虫。在这一期中,Li等人在中国高黎贡山的海拔和纬度梯度上进行了为期一年的每周采样,生成了10,524只条形码甲虫的数据集;(图5)雄索纳木在一朵花上;(图6)德国东北部农业景观中的壶洞元群落;(图7)在南非东海岸收集的浮游动物;(图8)瑞典科斯特群岛物种丰富的海藻群落;(图9)马尔代夫Faafu Atholl的一个原始岛屿,许多植物和传粉者在这里相互作用;(图10)用于监测珊瑚产卵的各种方法的说明,例如用水肺进行目测(最右),将收集杯和网放置在产卵菌落上直接取样珊瑚配子(左下),以及从海水中取样环境DNA (eDNA,中)。eDNA可能是研究珊瑚产卵事件的一种侵入性较小的方法;(图11)蜂巢上的蜜蜂。图片的顶部显示了一个覆盖着一层白蜡的蜂蜜储藏区。在蜂房的中央,蜜蜂正在储存蜂蜜和花粉。在底部,有一个孵化区域。图中大多数蜜蜂都是雌性工蜂,但也有少数较大的雄性雄蜂,它们的眼睛要大得多;(图12)一只蜂后在普通的自愈合物上觅食。近几十年来,该物种经历了种群数量下降和范围缩小。探究植物传粉媒介相互作用的新方法,如花粉元条形码,有望提高我们对传粉媒介饮食生态位如何随着全球环境变化而变化的理解;(图13)刚果民主共和国Kahuzi-Biega国家公园,一只年轻的雌性格劳厄大猩猩(gorilla beringei graueri)正在进食塔卡泽亚;(图14)Site 15470的照片,这是一处位于墨西哥湾北部的历史性沉船;(图15)近距离观察冯·达姆热液喷口区域地下冒出的暖流;(图16)在爱沙尼亚波罗的海沿岸的一个临时淡水池塘里,一棵杂草丛生的水藻;(图17)全代谢昆虫,比如这种可食用的粉虫甲虫,在发育过程中肠道微生物群的更替比它们的半代谢表亲要高得多。其原因是化蛹过程中机体的重组;(图18)夏威夷“i”Amakihi(绿锥虫)的照片;(图19)夏威夷大岛Pu'u Maka'ala自然保护区陆军路原生森林中的夏威夷特有蜘蛛(未描述的Tetragnatha物种)的网;(图20)水螅类(D. gegenbauri)被半纲片脚类动物和浮游生物包围。这张照片拍摄于美国佛罗里达州西棕榈滩海岸的黑水潜水时;(图21)生态专门化在进化过程中稳步增长。这幅插图显示的是夏威夷群岛特有的蛾子辐射的一部分——真蛾毛虫,它正在吃一种本地昆虫;(图22)开花的中国梧桐(梁龙科),树冠呈黄绿色;(图23)大型动物多样性和ARMS上的结壳与珊瑚覆盖呈正相关。高珊瑚覆盖的地点生境复杂性高,因此在珊瑚礁基质中有更多的裂缝和空洞,为珊瑚礁伴生生物,特别是大型后生动物物种提供微栖息地和避难所。ARMS模拟了珊瑚礁的三维结构,所以这些较大的珊瑚礁同伴可能以类似的方式利用ARMS。在不同珊瑚覆盖的地点,微生物群落是相对同质的。因此,在高珊瑚覆盖地点部署的ARMS增加了结壳,后生动物的多样性较高,但微生物的多样性较低;(图24)以1000米分辨率绘制的新南威尔士州预测土壤β-土壤细菌多样性分布;(图25)DNA元条形码可用于许多环境的详尽群落生态学,包括淡水、陆地生态系统和冰川相关环境;(图26)2003年6月12日在北大西洋(法国海岸外)的赫胥黎赤潮的卫星图像上,叠加了赫胥黎赤潮的扫描电子显微镜(SEM)图像;(图27)拟寄生蜂,Ganaspis cf。 brasilliensis,在一颗被果蝇寄生的浆果上整理自己;(图28)三角中的生殖操作:Asobara japonica - Wolbachia -宿主微生物群落;(图29)来自苍蝇粪便和反刍物的dna揭示了苍蝇和脊椎动物之间的相互作用;(图30)巴塔哥尼亚北部高海拔林分群死亡斑块;(图31)捕食性黄蜂Passaloecus sp.将蚜虫带进陷阱巢;(图32)利用共发育方法检测宿主-微生物群系统中的垂直传播;(图33)在Kosciuszko国家公园的夏洛特山口,苍蝇正在为Celmisia花授粉;(图34)在日本霞光湖附近的一片荷花地里觅食的绿翅水鸭(Anas crecca)。图片来源:(图1)Emmanouil Meramveliotakis;(图2)Víctor Noguerales;(图3)Javier Morente-López;(图4)瓦大;(图5)凯西·凯特利·加维;(图6)Jan Pufelski;(图7)Ashrenee Govender;(图8)索菲·斯坦哈根;(图9)保罗·比耶拉;(图10)叶德恩;(图11)娜塔莎·德维尔;(图12)罗德尼·理查森;(图13)妮莎·艾尔;(图14)ROV odyssus (Pelagic Research Services)拍摄的照片;(图15)Jeffrey S. Seewald &;WHOI;(图16)丹尼尔·赫尔曼;(图17)理查德·内勒;(图18)Amanda K. Navine;(图19)苏珊·肯尼迪;(图20)理查德·a·柯林斯;(图21)卡尔·马格纳卡;(图22)邓云;(图23)叶殷昌;(图24)凡妮莎·皮诺;(图25)g·f·费切托拉;(图26)卫星图像由NASA GSFC MODIS快速反应小组Jeff Schmaltz提供;扫描电镜图片由El Mahdi-Bendif;(图27)华伦·h·l·黄;(图28)Pina Brinker;(图29)Nick Baker, Maimon Hussin, Leshon Lee;(图30)Lucía Molina;(图31)菲利克斯·福诺夫博士;(图32)benot Perez-Lamarque;(图33)莉兹·米拉;(图34)齐藤玲子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Issue Information Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Patterns of chromosome evolution in ruminants. Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1