Benjamin M. Abdel-Karim, Nicolas Pfeuffer, K. Valerie Carl, Oliver Hinz
{"title":"How AI-Based Systems Can Induce Reflections: The Case of AI-Augmented Diagnostic Work","authors":"Benjamin M. Abdel-Karim, Nicolas Pfeuffer, K. Valerie Carl, Oliver Hinz","doi":"10.25300/misq/2022/16773","DOIUrl":null,"url":null,"abstract":"<style>#html-body [data-pb-style=S2AMIW1]{justify-content:flex-start;display:flex;flex-direction:column;background-position:left top;background-size:cover;background-repeat:no-repeat;background-attachment:scroll}</style>This paper addresses a thus-far neglected dimension in human-artificial intelligence (AI) augmentation: machine-induced reflections. By establishing a grounded theoretical-informed model of machine-induced reflection, we contribute to the ongoing discussion in information systems (IS) regarding AI and research on reflection theories. In our multistage study, physicians used a machine learning-based (ML) clinical decision support system (CDSS) to see if and how this interaction can stimulate reflective practice in the context of an X-ray diagnosis task. By analyzing verbal protocols, performance metrics, and survey data, we developed an integrative theoretical foundation to explain how ML-based systems can help stimulate reflective practice. Individuals engage in more critical or shallower modes depending on whether they perceive a conflict or agreement with these CDSS systems, which in turn leads to different levels of reflection depth. By uncovering the process of machine-induced reflections, we offer IS research a different perspective on how such AI-based systems can help individuals become more reflective, and consequently more effective, professionals. This perspective stands in stark contrast to the traditional, efficiency-focused view of ML-based decision support systems and also enriches theories on human-AI augmentation.","PeriodicalId":49807,"journal":{"name":"Mis Quarterly","volume":"116 7","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mis Quarterly","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.25300/misq/2022/16773","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses a thus-far neglected dimension in human-artificial intelligence (AI) augmentation: machine-induced reflections. By establishing a grounded theoretical-informed model of machine-induced reflection, we contribute to the ongoing discussion in information systems (IS) regarding AI and research on reflection theories. In our multistage study, physicians used a machine learning-based (ML) clinical decision support system (CDSS) to see if and how this interaction can stimulate reflective practice in the context of an X-ray diagnosis task. By analyzing verbal protocols, performance metrics, and survey data, we developed an integrative theoretical foundation to explain how ML-based systems can help stimulate reflective practice. Individuals engage in more critical or shallower modes depending on whether they perceive a conflict or agreement with these CDSS systems, which in turn leads to different levels of reflection depth. By uncovering the process of machine-induced reflections, we offer IS research a different perspective on how such AI-based systems can help individuals become more reflective, and consequently more effective, professionals. This perspective stands in stark contrast to the traditional, efficiency-focused view of ML-based decision support systems and also enriches theories on human-AI augmentation.
期刊介绍:
Journal Name: MIS Quarterly
Editorial Objective:
The editorial objective of MIS Quarterly is focused on:
Enhancing and communicating knowledge related to:
Development of IT-based services
Management of IT resources
Use, impact, and economics of IT with managerial, organizational, and societal implications
Addressing professional issues affecting the Information Systems (IS) field as a whole
Key Focus Areas:
Development of IT-based services
Management of IT resources
Use, impact, and economics of IT with managerial, organizational, and societal implications
Professional issues affecting the IS field as a whole