Colossal electrocaloric effect in an interface-augmented ferroelectric polymer

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2023-11-30 DOI:10.1126/science.adi7812
Shanyu Zheng, Feihong Du, Lirong Zheng, Donglin Han, Qiang Li, Junye Shi, Jiangping Chen, Xiaoming Shi, Houbing Huang, Yaorong Luo, Yurong Yang, Padraic O’Reilly, Linlin Wei, Nicolas de Souza, Liang Hong, Xiaoshi Qian
{"title":"Colossal electrocaloric effect in an interface-augmented ferroelectric polymer","authors":"Shanyu Zheng,&nbsp;Feihong Du,&nbsp;Lirong Zheng,&nbsp;Donglin Han,&nbsp;Qiang Li,&nbsp;Junye Shi,&nbsp;Jiangping Chen,&nbsp;Xiaoming Shi,&nbsp;Houbing Huang,&nbsp;Yaorong Luo,&nbsp;Yurong Yang,&nbsp;Padraic O’Reilly,&nbsp;Linlin Wei,&nbsp;Nicolas de Souza,&nbsp;Liang Hong,&nbsp;Xiaoshi Qian","doi":"10.1126/science.adi7812","DOIUrl":null,"url":null,"abstract":"<div >The electrocaloric effect demands the maximized degree of freedom (DOF) of polar domains and the lowest energy barrier to facilitate the transition of polarization. However, optimization of the DOF and energy barrier—including domain size, crystallinity, multiconformation coexistence, polar correlation, and other factors in bulk ferroelectrics—has reached a limit. We used organic crystal dimethylhexynediol (DMHD) as a three-dimensional sacrificial master to assemble polar conformations at the heterogeneous interface in poly(vinylidene fluoride)–based terpolymer. DMHD was evaporated, and the epitaxy-like process induced an ultrafinely distributed, multiconformation-coexisting polar interface exhibiting a giant conformational entropy. Under a low electric field, the interface-augmented terpolymer had a high entropy change of 100 J/(kg·K). This interface polarization strategy is generally applicable to dielectric capacitors, supercapacitors, and other related applications.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adi7812","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocaloric effect demands the maximized degree of freedom (DOF) of polar domains and the lowest energy barrier to facilitate the transition of polarization. However, optimization of the DOF and energy barrier—including domain size, crystallinity, multiconformation coexistence, polar correlation, and other factors in bulk ferroelectrics—has reached a limit. We used organic crystal dimethylhexynediol (DMHD) as a three-dimensional sacrificial master to assemble polar conformations at the heterogeneous interface in poly(vinylidene fluoride)–based terpolymer. DMHD was evaporated, and the epitaxy-like process induced an ultrafinely distributed, multiconformation-coexisting polar interface exhibiting a giant conformational entropy. Under a low electric field, the interface-augmented terpolymer had a high entropy change of 100 J/(kg·K). This interface polarization strategy is generally applicable to dielectric capacitors, supercapacitors, and other related applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面增强铁电聚合物的巨大电热效应。
电热效应要求最大的极域自由度(DOF)和最低的能垒以促进极化的转变。然而,对块体铁电体的自由度和能量势垒的优化——包括畴尺寸、结晶度、多构象共存、极性相关和其他因素——已经达到了极限。我们以有机晶体二甲己二醇(DMHD)作为三维牺牲载体,在聚偏氟乙烯基三元共聚物的非均相界面上组装极性构象。蒸发DMHD后,类外延过程产生了一个分布超细、多构象共存的极性界面,具有巨大的构象熵。在低电场条件下,界面增强三元共聚物的熵变达到100 J/(kg·K)。这种界面极化策略一般适用于介质电容器、超级电容器等相关应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
AI can help humans find common ground in democratic deliberation Mechanism of bacterial predation via ixotrophy Megastudy testing 25 treatments to reduce antidemocratic attitudes and partisan animosity Global rise in forest fire emissions linked to climate change in the extratropics The development and impact of tin selenide on thermoelectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1