Hideyuki Hotta, Yuto Bekki, Laurent Gizon, Quentin Noraz, Mark Rast
{"title":"Dynamics of Large-Scale Solar Flows.","authors":"Hideyuki Hotta, Yuto Bekki, Laurent Gizon, Quentin Noraz, Mark Rast","doi":"10.1007/s11214-023-01021-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Sun's axisymmetric large-scale flows, differential rotation and meridional circulation, are thought to be maintained by the influence of rotation on the thermal-convective motions in the solar convection zone. These large-scale flows are crucial for maintaining the Sun's global magnetic field. Over the last several decades, our understanding of large-scale motions in the Sun has significantly improved, both through observational and theoretical efforts. Helioseismology has constrained the flow topology in the solar interior, and the growth of supercomputers has enabled simulations that can self-consistently generate large-scale flows in rotating spherical convective shells. In this article, we review our current understanding of solar convection and the large-scale flows present in the Sun, including those associated with the recently discovered inertial modes of oscillation. We discuss some issues still outstanding, and provide an outline of future efforts needed to address these.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 8","pages":"77"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-01021-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Sun's axisymmetric large-scale flows, differential rotation and meridional circulation, are thought to be maintained by the influence of rotation on the thermal-convective motions in the solar convection zone. These large-scale flows are crucial for maintaining the Sun's global magnetic field. Over the last several decades, our understanding of large-scale motions in the Sun has significantly improved, both through observational and theoretical efforts. Helioseismology has constrained the flow topology in the solar interior, and the growth of supercomputers has enabled simulations that can self-consistently generate large-scale flows in rotating spherical convective shells. In this article, we review our current understanding of solar convection and the large-scale flows present in the Sun, including those associated with the recently discovered inertial modes of oscillation. We discuss some issues still outstanding, and provide an outline of future efforts needed to address these.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.