{"title":"Source Parameters of Strong Turkish Earthquakes on February 6, 2023 (Mw = 7.8 and Mw = 7.7) from Surface Wave Data","authors":"A. I. Filippova, A. S. Fomochkina","doi":"10.1134/S1069351323060071","DOIUrl":null,"url":null,"abstract":"<p>Based on the amplitude spectra of surface waves, the source parameters of the strong Turkish earthquakes on February 6, 2023 (<i>M</i><sub><i>w</i></sub> = 7.8 and <i>M</i><sub><i>w</i></sub> = 7.7) were calculated in two approximations: an instantaneous point source and an elliptical shear dislocation. As a result, fault planes were identified, data were obtained on the scalar seismic moment, moment magnitude, focal mechanism, and source depth of the considered seismic events, and the integral parameters characterizing the fault geometry and its development in time were estimated. It is shown that the sources of the earthquakes under study were formed under the action of the regional stress field and their focal mechanisms were sinistral strike-slips with a strike direction close to the strike of the East Anatolian fault zone for the first event and close to the strike of the Sürgü-Çardak fault system for the second one. For the first earthquake, our estimates of the rupture duration and its length (<i>t</i> = 52.5 s, <i>L</i> = 180 km) probably refer not to the entire rupture, but only to its main phase, confined to the northeastern segments of the East Anatolian Fault and characterized by maximum displacements and values of the released seismic moment. The values of <i>t</i> = 30 s and <i>L</i> = 180 km that we obtained for the second earthquake fully characterize the entire rupture.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"899 - 911"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351323060071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the amplitude spectra of surface waves, the source parameters of the strong Turkish earthquakes on February 6, 2023 (Mw = 7.8 and Mw = 7.7) were calculated in two approximations: an instantaneous point source and an elliptical shear dislocation. As a result, fault planes were identified, data were obtained on the scalar seismic moment, moment magnitude, focal mechanism, and source depth of the considered seismic events, and the integral parameters characterizing the fault geometry and its development in time were estimated. It is shown that the sources of the earthquakes under study were formed under the action of the regional stress field and their focal mechanisms were sinistral strike-slips with a strike direction close to the strike of the East Anatolian fault zone for the first event and close to the strike of the Sürgü-Çardak fault system for the second one. For the first earthquake, our estimates of the rupture duration and its length (t = 52.5 s, L = 180 km) probably refer not to the entire rupture, but only to its main phase, confined to the northeastern segments of the East Anatolian Fault and characterized by maximum displacements and values of the released seismic moment. The values of t = 30 s and L = 180 km that we obtained for the second earthquake fully characterize the entire rupture.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.