The potassium channel subunit KV1.8 (Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells.
Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
{"title":"The potassium channel subunit K<sub>V</sub>1.8 (<i>Kcna10</i>) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells.","authors":"Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock","doi":"10.1101/2023.11.21.563853","DOIUrl":null,"url":null,"abstract":"<p><p>In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, g<sub>K,L</sub>, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to K<sub>V</sub>1.8 (KCNA10) in the Shaker K channel family as a candidate g<sub>K,L</sub> subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of K<sub>V</sub>1.8-null mice and littermate controls. We found that K<sub>V</sub>1.8 is necessary not just for g<sub>K,L</sub> but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three K<sub>V</sub>1.8-dependent conductances may reflect different mixing with other K<sub>V</sub> subunits that are reported to be differentially expressed in type I and II HCs. In K<sub>V</sub>1.8-null HCs of both types, residual outwardly rectifying conductances include K<sub>V</sub>7 (KCNQ) channels. Current clamp records show that in both HC types, K<sub>V</sub>1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.21.563853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (KCNA10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (KCNQ) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.