{"title":"Hydration lubrication modulated by water structure at TiO2-aqueous interfaces","authors":"Pingsu Ma, Yuan Liu, Ke Han, Yu Tian, Liran Ma","doi":"10.1007/s40544-023-0750-x","DOIUrl":null,"url":null,"abstract":"<p>The nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO<sub>2</sub>–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO<sub>2</sub> surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO<sub>2</sub> surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO<sub>2</sub> surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO<sub>2</sub>. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 49","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0750-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO2–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO2 surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO2 surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO2 surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO2. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.