{"title":"Photothermoelectric Synergistic Hydrovoltaic Effect: A Flexible Photothermoelectric Yarn Panel for Multiple Renewable-Energy Harvesting","authors":"Ting-Ting Li*, Xiao-Xuan Fan, Xiaoyang Zhang, Xuefei Zhang, Ching-Wen Lou* and Jia-Horng Lin*, ","doi":"10.1021/acsami.3c14033","DOIUrl":null,"url":null,"abstract":"<p >The human body is in a complex environment affected by body heat, light, and sweat, requiring the development of a wearable multifunctional textile for human utilization. Meanwhile, the traditional thermoelectric yarn is limited by expensive and scarce inorganic thermoelectric materials, which restricts the development of thermoelectric textiles. Therefore, in this paper, photothermoelectric yarns (PPDA–PPy-PEDOT/CuI) using organic poly(3,4-ethylenedioxythiophene) (PEDOT) and inorganic thermoelectric material cuprous iodide (CuI) are used for the thermoelectric layer and poly(pyrrole) (PPy) for the light-absorbing layer. With the introduction of PPy, the temperature difference of the photothermoelectric yarn can be increased for a better voltage output. Subsequently synergizing the photothermoelectric effect with the hydrovoltaic effect to create higher electric potentials, a single wet photothermoelectric yarn obtained by preparation can be irradiated under an infrared lamp at a voltage of up to 0.47 V. Finally, the photothermoelectric yarn PPDA–PPy-PEDOT/CuI was assembled in a series and parallel to obtain a photothermoelectric yarn panel, which was able to output 41.19 mV under an infrared lamp, and the synergistic photothermoelectric and hydrovoltaic effects of the photothermoelectric panel were tested outdoors on human body, and we found that the voltage was able to reach approximately 0.16 V under sunlight. Therefore, the voltage values obtained from the photothermoelectric yarns in this study are competitive and provide a new research idea for the study of photothermoelectric yarns.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 49","pages":"57219–57229"},"PeriodicalIF":8.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c14033","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The human body is in a complex environment affected by body heat, light, and sweat, requiring the development of a wearable multifunctional textile for human utilization. Meanwhile, the traditional thermoelectric yarn is limited by expensive and scarce inorganic thermoelectric materials, which restricts the development of thermoelectric textiles. Therefore, in this paper, photothermoelectric yarns (PPDA–PPy-PEDOT/CuI) using organic poly(3,4-ethylenedioxythiophene) (PEDOT) and inorganic thermoelectric material cuprous iodide (CuI) are used for the thermoelectric layer and poly(pyrrole) (PPy) for the light-absorbing layer. With the introduction of PPy, the temperature difference of the photothermoelectric yarn can be increased for a better voltage output. Subsequently synergizing the photothermoelectric effect with the hydrovoltaic effect to create higher electric potentials, a single wet photothermoelectric yarn obtained by preparation can be irradiated under an infrared lamp at a voltage of up to 0.47 V. Finally, the photothermoelectric yarn PPDA–PPy-PEDOT/CuI was assembled in a series and parallel to obtain a photothermoelectric yarn panel, which was able to output 41.19 mV under an infrared lamp, and the synergistic photothermoelectric and hydrovoltaic effects of the photothermoelectric panel were tested outdoors on human body, and we found that the voltage was able to reach approximately 0.16 V under sunlight. Therefore, the voltage values obtained from the photothermoelectric yarns in this study are competitive and provide a new research idea for the study of photothermoelectric yarns.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.