Structural Shifts of the Parvovirus B19 Capsid Receptor-binding Domain: A Peptide Study.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2024-01-01 DOI:10.2174/0109298665272845231121064717
Vladislav Victorovich Khrustalev, Aleksander Nicolaevich Stojarov, Anastasia Aleksandrovna Akunevich, Oleg Evgenyevich Baranov, Anna Vladimirovna Popinako, Elena Olegovna Samoilovich, Marina Anatolyevna Yermalovich, Galina Valeryevna Semeiko, Egor Gennadyevich Sapon, Victoria Igorevna Cheprasova, Nikolai Vladimirovich Shalygo, Victor Vitoldovich Poboinev, Tatyana Aleksandrovna Khrustaleva, Olga Victorovna Khrustaleva
{"title":"Structural Shifts of the Parvovirus B19 Capsid Receptor-binding Domain: A Peptide Study.","authors":"Vladislav Victorovich Khrustalev, Aleksander Nicolaevich Stojarov, Anastasia Aleksandrovna Akunevich, Oleg Evgenyevich Baranov, Anna Vladimirovna Popinako, Elena Olegovna Samoilovich, Marina Anatolyevna Yermalovich, Galina Valeryevna Semeiko, Egor Gennadyevich Sapon, Victoria Igorevna Cheprasova, Nikolai Vladimirovich Shalygo, Victor Vitoldovich Poboinev, Tatyana Aleksandrovna Khrustaleva, Olga Victorovna Khrustaleva","doi":"10.2174/0109298665272845231121064717","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Binding appropriate cellular receptors is a crucial step of a lifecycle for any virus. Structure of receptor-binding domain for a viral surface protein has to be determined before the start of future drug design projects.</p><p><strong>Objectives: </strong>Investigation of pH-induced changes in the secondary structure for a capsid peptide with loss of function mutation can shed some light on the mechanism of entrance.</p><p><strong>Methods: </strong>Spectroscopic methods were accompanied by electrophoresis, ultrafiltration, and computational biochemistry.</p><p><strong>Results: </strong>In this study, we showed that a peptide from the receptor-binding domain of Parvovirus B19 VP1 capsid (residues 13-31) is beta-structural at pH=7.4 in 0.01 M phosphate buffer, but alpha- helical at pH=5.0, according to the circular dichroism (CD) spectroscopy results. Results of infra- red (IR) spectroscopy showed that the same peptide exists in both alpha-helical and beta-structural conformations in partial dehydration conditions both at pH=7.4 and pH=5.0. In contrast, the peptide with Y20W mutation, which is known to block the internalization of the virus, forms mostly alpha-helical conformation in partial dehydration conditions at pH=7.4. According to our hypothesis, an intermolecular antiparallel beta structure formed by the wild-type peptide in its tetramers at pH=7.4 is the prototype of the similar intermolecular antiparallel beta structure formed by the corresponding part of Parvovirus B19 receptor-binding domain with its cellular receptor (AXL).</p><p><strong>Conclusion: </strong>Loss of function Y20W substitution in VP1 capsid protein prevents the shift into the beta-structural state by the way of alpha helix stabilization and the decrease of its ability to turn into the disordered state.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"128-140"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665272845231121064717","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Binding appropriate cellular receptors is a crucial step of a lifecycle for any virus. Structure of receptor-binding domain for a viral surface protein has to be determined before the start of future drug design projects.

Objectives: Investigation of pH-induced changes in the secondary structure for a capsid peptide with loss of function mutation can shed some light on the mechanism of entrance.

Methods: Spectroscopic methods were accompanied by electrophoresis, ultrafiltration, and computational biochemistry.

Results: In this study, we showed that a peptide from the receptor-binding domain of Parvovirus B19 VP1 capsid (residues 13-31) is beta-structural at pH=7.4 in 0.01 M phosphate buffer, but alpha- helical at pH=5.0, according to the circular dichroism (CD) spectroscopy results. Results of infra- red (IR) spectroscopy showed that the same peptide exists in both alpha-helical and beta-structural conformations in partial dehydration conditions both at pH=7.4 and pH=5.0. In contrast, the peptide with Y20W mutation, which is known to block the internalization of the virus, forms mostly alpha-helical conformation in partial dehydration conditions at pH=7.4. According to our hypothesis, an intermolecular antiparallel beta structure formed by the wild-type peptide in its tetramers at pH=7.4 is the prototype of the similar intermolecular antiparallel beta structure formed by the corresponding part of Parvovirus B19 receptor-binding domain with its cellular receptor (AXL).

Conclusion: Loss of function Y20W substitution in VP1 capsid protein prevents the shift into the beta-structural state by the way of alpha helix stabilization and the decrease of its ability to turn into the disordered state.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parvovirus B19 冠状病毒受体结合域的结构转变:多肽研究。
背景:与适当的细胞受体结合是任何病毒生命周期的关键步骤。在未来的药物设计项目开始之前,必须确定病毒表面蛋白受体结合域的结构:目的:研究 pH 诱导的功能缺失突变肽的二级结构变化可揭示其入口机制:方法:采用电泳、超滤和计算生物化学等光谱方法:根据圆二色性(CD)光谱的结果,我们发现 Parvovirus B19 VP1 capsid 的受体结合域(残基 13-31)的多肽在 0.01 M 磷酸盐缓冲液中 pH=7.4 时为 beta 结构,而在 pH=5.0 时为 alpha 螺旋结构。红外光谱(IR)结果表明,在 pH=7.4 和 pH=5.0 的部分脱水条件下,同一种多肽既存在于α-螺旋构象,也存在于β-结构构象。与此相反,在 pH=7.4 的部分脱水条件下,Y20W 突变的多肽主要形成α-螺旋构象。根据我们的假设,野生型多肽在 pH=7.4 的四聚体中形成的分子间反平行 beta 结构,是 Parvovirus B19 受体结合结构域的相应部分与其细胞受体(AXL)形成的类似分子间反平行 beta 结构的原型:结论:VP1帽状蛋白中的功能缺失Y20W置换可通过稳定α螺旋和降低其转变为无序状态的能力来防止其转变为β结构状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer's Disease. Honeybee Venom: A Potential Source of Anticancer Components. Comparative Analysis of IMT-P8 and LDP12 Cell-Penetrating Peptides in Increasing Immunostimulatory Properties of HIV-1 Nef-MPER-V3 Antigen. Aloperine Attenuates UVB-induced Damage in Skin Fibroblasts Via Activating TFE3/Beclin-1-Mediated Autophagy. Ferroptosis as a Therapeutic Target in Neurodegenerative Diseases: Exploring the Mechanisms and Potential of Treating Alzheimer's Disease and Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1