Predominant audio source separation in polyphonic music

IF 1.7 3区 计算机科学 Q2 ACOUSTICS Eurasip Journal on Audio Speech and Music Processing Pub Date : 2023-11-24 DOI:10.1186/s13636-023-00316-4
Lekshmi Chandrika Reghunath, Rajeev Rajan
{"title":"Predominant audio source separation in polyphonic music","authors":"Lekshmi Chandrika Reghunath, Rajeev Rajan","doi":"10.1186/s13636-023-00316-4","DOIUrl":null,"url":null,"abstract":"Predominant source separation is the separation of one or more desired predominant signals, such as voice or leading instruments, from polyphonic music. The proposed work uses time-frequency filtering on predominant source separation and conditional adversarial networks to improve the perceived quality of isolated sounds. The pitch tracks corresponding to the prominent sound sources of the polyphonic music are estimated using a predominant pitch extraction algorithm and a binary mask corresponding to each pitch track and its harmonics are generated. Time-frequency filtering is performed on the spectrogram of the input signal using a binary mask that isolates the dominant sources based on pitch. The perceptual quality of source-separated music signal is enhanced using a CycleGAN-based conditional adversarial network operating on spectrogram images. The proposed work is systematically evaluated using the IRMAS and ADC 2004 datasets. Subjective and objective evaluations have been carried out. The reconstructed spectrogram is converted back to music signals by applying the inverse short-time Fourier transform. The intelligibility of separated audio is enhanced using an intelligibility enhancement module based on an audio style transfer scheme. The performance of the proposed method is compared with state-of-the-art Demucs and Wave-U-Net architectures and shows competing performance both objectively and subjectively.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":" 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-023-00316-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Predominant source separation is the separation of one or more desired predominant signals, such as voice or leading instruments, from polyphonic music. The proposed work uses time-frequency filtering on predominant source separation and conditional adversarial networks to improve the perceived quality of isolated sounds. The pitch tracks corresponding to the prominent sound sources of the polyphonic music are estimated using a predominant pitch extraction algorithm and a binary mask corresponding to each pitch track and its harmonics are generated. Time-frequency filtering is performed on the spectrogram of the input signal using a binary mask that isolates the dominant sources based on pitch. The perceptual quality of source-separated music signal is enhanced using a CycleGAN-based conditional adversarial network operating on spectrogram images. The proposed work is systematically evaluated using the IRMAS and ADC 2004 datasets. Subjective and objective evaluations have been carried out. The reconstructed spectrogram is converted back to music signals by applying the inverse short-time Fourier transform. The intelligibility of separated audio is enhanced using an intelligibility enhancement module based on an audio style transfer scheme. The performance of the proposed method is compared with state-of-the-art Demucs and Wave-U-Net architectures and shows competing performance both objectively and subjectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在复调音乐中主要的音源分离
优势源分离是指从复调音乐中分离出一个或多个期望的优势信号,如人声或主导乐器。提出的工作在主要源分离和条件对抗网络上使用时频滤波来提高孤立声音的感知质量。使用主要的音高提取算法估计与复调音乐的突出声源相对应的音高轨道,并生成与每个音高轨道及其谐波相对应的二进制掩模。对输入信号的频谱图进行时频滤波,使用基于基音隔离优势源的二值掩模。使用基于cyclegan的条件对抗网络对谱图图像进行操作,增强了源分离音乐信号的感知质量。使用IRMAS和ADC 2004数据集对建议的工作进行了系统评估。进行了主观和客观评价。利用短时傅里叶反变换将重构谱图转换回音乐信号。使用基于音频样式转移方案的可理解性增强模块来增强分离音频的可理解性。将该方法的性能与最先进的Demucs和Wave-U-Net架构进行了比较,并在客观上和主观上显示了竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
期刊最新文献
Compression of room impulse responses for compact storage and fast low-latency convolution Guest editorial: AI for computational audition—sound and music processing Physics-constrained adaptive kernel interpolation for region-to-region acoustic transfer function: a Bayesian approach Physics-informed neural network for volumetric sound field reconstruction of speech signals Optimal sensor placement for the spatial reconstruction of sound fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1