Yelin Ni, Tucker T. Bisel, Md Kamrul Hasan, Donghui Li, Witold K. Fuchs, Scott K. Cooley, Larry Nichols, Matt Pharr, Nathalie Dupuy, Sylvain R. A. Marque, Mark K. Murphy, Suresh D. Pillai, Samuel Dorey, Leonard S. Fifield
{"title":"Compatibility of ethylene vinyl acetate (EVA)/ethylene vinyl alcohol (EVOH)/EVA films with gamma, electron-beam, and X-ray irradiation","authors":"Yelin Ni, Tucker T. Bisel, Md Kamrul Hasan, Donghui Li, Witold K. Fuchs, Scott K. Cooley, Larry Nichols, Matt Pharr, Nathalie Dupuy, Sylvain R. A. Marque, Mark K. Murphy, Suresh D. Pillai, Samuel Dorey, Leonard S. Fifield","doi":"10.1038/s41529-023-00413-x","DOIUrl":null,"url":null,"abstract":"Many polymer-based medical devices are sterilized by gamma irradiation. To reduce the use of cobalt-60 gamma-ray sources, transition from gamma ray to alternative irradiation technologies was proposed, namely electron beam (e-beam) and X-ray. A major impediment for such a transition is the knowledge gap in material compatibility with the different radiation sources. In this study, multi-layer films consisting of ethylene vinyl acetate (EVA) and ethylene vinyl alcohol (EVOH) components were irradiated to target doses of 30, 45, and 60 kGy by gamma-ray, e-beam, and X-ray sources. Effects of irradiation were evaluated on 12 material properties, and statistical comparisons between gamma irradiation and alternative technologies were conducted using the two one-sided t-test (or “equivalence test”) and classic t-test. Melting temperature and UV absorbance below 300 nm showed dose dependencies, while other investigated properties such as discoloration and mechanical durability did not change with dose up to 60 kGy. Based on these results, there is no material compatibility issue associated with the transition from gamma to e-beam or to X-ray as source of sterilization radiation of the studied multi-layer film.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-023-00413-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-023-00413-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many polymer-based medical devices are sterilized by gamma irradiation. To reduce the use of cobalt-60 gamma-ray sources, transition from gamma ray to alternative irradiation technologies was proposed, namely electron beam (e-beam) and X-ray. A major impediment for such a transition is the knowledge gap in material compatibility with the different radiation sources. In this study, multi-layer films consisting of ethylene vinyl acetate (EVA) and ethylene vinyl alcohol (EVOH) components were irradiated to target doses of 30, 45, and 60 kGy by gamma-ray, e-beam, and X-ray sources. Effects of irradiation were evaluated on 12 material properties, and statistical comparisons between gamma irradiation and alternative technologies were conducted using the two one-sided t-test (or “equivalence test”) and classic t-test. Melting temperature and UV absorbance below 300 nm showed dose dependencies, while other investigated properties such as discoloration and mechanical durability did not change with dose up to 60 kGy. Based on these results, there is no material compatibility issue associated with the transition from gamma to e-beam or to X-ray as source of sterilization radiation of the studied multi-layer film.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies