{"title":"Identification of historic building “genes” based on deep learning: a case study on Chinese baroque architecture in Harbin, China","authors":"Long Shao, Jianqiao Sun","doi":"10.1186/s40494-023-01091-3","DOIUrl":null,"url":null,"abstract":"<p>The monitoring and protection of historic buildings require a highly professional team and material resources. Monitoring and protecting historical architectural features is an urgent issue. According to the theory of biological gene expression, genes are the fundamental units that control and express biological traits. Similarly, the “genes” of historical architecture are the basic units that control historic features. Identifying these historical architecture “genes” involves identifying the main factors that control the historic features. This process is important for monitoring and protecting the historic features. At present, qualitative subjectivity, difficult quantification, poor recognition accuracy, and low reasoning and recognition efficiency exist in the genetic identification of historic buildings. As an example, this article describes Chinese Baroque architecture in Harbin, China, and draws on the principles of biological gene recognition to reference methods of architectural gene recognition in cultural geography and architecture. Improved U-Net models, traditional U-Net models, FCN models, and EfficientNet models that incorporate channel attention mechanisms are used to identify historic building genes, obtaining the optimal intelligent recognition for historical architectural genes based on deep learning. This research shows that the accuracy of an improved U-Net model incorporating a channel attention mechanism is 69%, which is 4%, 7%, and 1% higher than those of the traditional U-Net, FCN, and EfficientNet, respectively. The F1 score of the improved U-Net model reaches 0.654, which is higher than the 0.619 of the traditional U-Net model, 0.645 of the EfficientNet model, and 0.501 of the FCN model. Therefore, the improved U-Net model is the optimal method for identifying historical architecture genes. This research can provide new tools and methods for identifying historical architectural genes.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"101 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-023-01091-3","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The monitoring and protection of historic buildings require a highly professional team and material resources. Monitoring and protecting historical architectural features is an urgent issue. According to the theory of biological gene expression, genes are the fundamental units that control and express biological traits. Similarly, the “genes” of historical architecture are the basic units that control historic features. Identifying these historical architecture “genes” involves identifying the main factors that control the historic features. This process is important for monitoring and protecting the historic features. At present, qualitative subjectivity, difficult quantification, poor recognition accuracy, and low reasoning and recognition efficiency exist in the genetic identification of historic buildings. As an example, this article describes Chinese Baroque architecture in Harbin, China, and draws on the principles of biological gene recognition to reference methods of architectural gene recognition in cultural geography and architecture. Improved U-Net models, traditional U-Net models, FCN models, and EfficientNet models that incorporate channel attention mechanisms are used to identify historic building genes, obtaining the optimal intelligent recognition for historical architectural genes based on deep learning. This research shows that the accuracy of an improved U-Net model incorporating a channel attention mechanism is 69%, which is 4%, 7%, and 1% higher than those of the traditional U-Net, FCN, and EfficientNet, respectively. The F1 score of the improved U-Net model reaches 0.654, which is higher than the 0.619 of the traditional U-Net model, 0.645 of the EfficientNet model, and 0.501 of the FCN model. Therefore, the improved U-Net model is the optimal method for identifying historical architecture genes. This research can provide new tools and methods for identifying historical architectural genes.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.