{"title":"Revisiting the Relationship between the North Pacific High and Upwelling Winds along the West Coast of North America in the Present and Future Climate","authors":"Hui Ding, Michael A. Alexander, Mingfang Ting","doi":"10.1175/jcli-d-23-0238.1","DOIUrl":null,"url":null,"abstract":"Abstract The wind-driven circulation is an important driver of upwelling in the California Current System, a key factor in maintaining a productive ecosystem. In summer, the North Pacific high (NPH) dominates the atmospheric circulation, including the nearshore winds. The impact of the NPH on the surface winds along the North American west coast during summer is examined using the ECMWF Reanalysis v5 (ERA5) and the Community Earth System Model version 1 (CESM1) large ensemble of simulations. The strength, latitude, and longitude of the sea level pressure (SLP) and subsidence at 500 hPa are used to assess the NPH and its variability. While both the surface high pressure cell and subsidence are related to the interannual variability of the surface winds over the North Pacific, the strength of subsidence has a much larger effect on the coastal winds than the variability in SLP. Based on the mean of the 40 CESM simulations, future changes in upwelling also more strongly coincide with changes in subsidence than in SLP. Subsidence and southward upwelling-favorable winds increase off the Canadian coast, with the reverse occurring off the U.S. West Coast, by the end of the twenty-first century. In particular, the intermember correlation between the changes in the nearshore surface winds and the 500-hPa pressure vertical velocity reaches 0.75 and 0.87 in the southern and northern portions of the northeast Pacific, respectively. The effect of the subsidence on upwelling winds in the future is confirmed by the CESM2 large ensemble.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"509 35","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0238.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The wind-driven circulation is an important driver of upwelling in the California Current System, a key factor in maintaining a productive ecosystem. In summer, the North Pacific high (NPH) dominates the atmospheric circulation, including the nearshore winds. The impact of the NPH on the surface winds along the North American west coast during summer is examined using the ECMWF Reanalysis v5 (ERA5) and the Community Earth System Model version 1 (CESM1) large ensemble of simulations. The strength, latitude, and longitude of the sea level pressure (SLP) and subsidence at 500 hPa are used to assess the NPH and its variability. While both the surface high pressure cell and subsidence are related to the interannual variability of the surface winds over the North Pacific, the strength of subsidence has a much larger effect on the coastal winds than the variability in SLP. Based on the mean of the 40 CESM simulations, future changes in upwelling also more strongly coincide with changes in subsidence than in SLP. Subsidence and southward upwelling-favorable winds increase off the Canadian coast, with the reverse occurring off the U.S. West Coast, by the end of the twenty-first century. In particular, the intermember correlation between the changes in the nearshore surface winds and the 500-hPa pressure vertical velocity reaches 0.75 and 0.87 in the southern and northern portions of the northeast Pacific, respectively. The effect of the subsidence on upwelling winds in the future is confirmed by the CESM2 large ensemble.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.