Dyke to sill deflection in the shallow heterogeneous crust during glacier retreat: part I

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Bulletin of Volcanology Pub Date : 2023-11-27 DOI:10.1007/s00445-023-01684-7
Kyriaki Drymoni, Alessandro Tibaldi, Fabio Luca Bonali, Federico Aligi Pasquarè Mariotto
{"title":"Dyke to sill deflection in the shallow heterogeneous crust during glacier retreat: part I","authors":"Kyriaki Drymoni, Alessandro Tibaldi, Fabio Luca Bonali, Federico Aligi Pasquarè Mariotto","doi":"10.1007/s00445-023-01684-7","DOIUrl":null,"url":null,"abstract":"<p>Dykes and sills occupy Mode I (extension), Mode II (shear), or hybrid mode fractures and most of the time transport and store magma from deep reservoirs to the surface. Subject to their successful propagation, they feed volcanic eruptions. Yet, dykes and sills can also stall and become arrested as a result of the crust’s heterogeneous and anisotropic characteristics. Dykes can become deflected at mechanical discontinuities to form sills, and vice versa. Although several studies have examined dyke propagation in heterogeneous and anisotropic crustal segments before, the conditions under which dykes propagate in glacial-volcanotectonic regimes remain unclear. Here, we coupled field observations with 2D FEM numerical modelling to explore the mechanical conditions that encourage (or not) dyke-sill transitions in volcanotectonic or glacial settings. We used as a field example the Stardalur cone sheet-laccolith system, which lies on the Esja peninsula, close to the western rift zone, NW of the southern part of the Icelandic rift. The laccolith is composed of several vertical dykes that transition into sills and form a unique stacked sill ‘flower’ structure. Here, we investigate whether the Stardalur laccolith was formed under the influence of stresses caused by glacial retreat due to thickness variations (0–1 km) in addition to regional and local tectonic stresses (1–3 MPa extension or compression) and varied magma overpressure (1–30 MPa), as well as the influence of the mechanical properties of the lava/hyaloclastite contact. Our results show that the observed field structure in non-glacial regimes was formed as a result of either the mechanical (Young’s modulus) contrast of the lava/hyaloclastite contact or a compressional regime due to pre-existing dykes or faulting. In the glacial domain, the extensional stress field below the ice cap encouraged the formation of the laccolith as the glacier became thinner (subject to a lower vertical load). In all cases, the local stress field influenced dyke to sill deflection in both volcanotectonic regimes.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"372 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01684-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dykes and sills occupy Mode I (extension), Mode II (shear), or hybrid mode fractures and most of the time transport and store magma from deep reservoirs to the surface. Subject to their successful propagation, they feed volcanic eruptions. Yet, dykes and sills can also stall and become arrested as a result of the crust’s heterogeneous and anisotropic characteristics. Dykes can become deflected at mechanical discontinuities to form sills, and vice versa. Although several studies have examined dyke propagation in heterogeneous and anisotropic crustal segments before, the conditions under which dykes propagate in glacial-volcanotectonic regimes remain unclear. Here, we coupled field observations with 2D FEM numerical modelling to explore the mechanical conditions that encourage (or not) dyke-sill transitions in volcanotectonic or glacial settings. We used as a field example the Stardalur cone sheet-laccolith system, which lies on the Esja peninsula, close to the western rift zone, NW of the southern part of the Icelandic rift. The laccolith is composed of several vertical dykes that transition into sills and form a unique stacked sill ‘flower’ structure. Here, we investigate whether the Stardalur laccolith was formed under the influence of stresses caused by glacial retreat due to thickness variations (0–1 km) in addition to regional and local tectonic stresses (1–3 MPa extension or compression) and varied magma overpressure (1–30 MPa), as well as the influence of the mechanical properties of the lava/hyaloclastite contact. Our results show that the observed field structure in non-glacial regimes was formed as a result of either the mechanical (Young’s modulus) contrast of the lava/hyaloclastite contact or a compressional regime due to pre-existing dykes or faulting. In the glacial domain, the extensional stress field below the ice cap encouraged the formation of the laccolith as the glacier became thinner (subject to a lower vertical load). In all cases, the local stress field influenced dyke to sill deflection in both volcanotectonic regimes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰川后退过程中浅层非均质地壳的堤-基偏转:第一部分
岩脉和岩台以ⅰ型(伸展)、ⅱ型(剪切)或混合型裂缝为主,多数时候将深部储层的岩浆输送和储存到地表。如果繁殖成功,它们就会成为火山喷发的食物。然而,由于地壳的非均质性和各向异性特征,岩脉和岩脉也可能会失速和停滞。堤防可以在机械不连续处发生偏转,形成堤防,反之亦然。虽然之前有一些研究考察了非均质和各向异性地壳段的岩脉扩展,但在冰川-火山构造制度下岩脉扩展的条件尚不清楚。在这里,我们将实地观测与二维有限元数值模拟相结合,以探索在火山构造或冰川环境中促进(或不促进)堤基过渡的力学条件。我们以位于冰岛裂谷南部西北方向,靠近西部裂谷带的Esja半岛上的Stardalur锥状片状岩系为例。石灰石由几个垂直的岩脉组成,这些岩脉过渡到窗台,形成独特的堆叠窗台“花朵”结构。本文研究了Stardalur泥质岩是否在厚度变化(0 ~ 1 km)、区域和局部构造应力(1 ~ 3 MPa伸展或压缩)和岩浆超压变化(1 ~ 30 MPa)的影响下形成,以及熔岩/透明质碎屑岩接触力学性质的影响。我们的研究结果表明,在非冰川状态下观察到的场结构是由熔岩/透明碎屑岩接触的力学(杨氏模量)对比或由于预先存在的岩脉或断裂而形成的挤压状态形成的。在冰川域,随着冰川变薄(受到较低的垂直载荷),冰盖下的伸展应力场促进了冰碛石的形成。在两种火山构造体系中,局部应力场均影响岩壁向岩壁的偏转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
期刊最新文献
Blossoming of the Pleistocene volcanism in the Ecuadorian Andes: a review based on new and recent geochronological data From field station to forecast: managing data at the Alaska Volcano Observatory Towards inclusive collaboration in volcanology: guidelines for best-engagement protocols in international collaboration Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska Volcano-tectonic controls on the morphology and volcanic rift zone configuration on Bioko Island (Equatorial Guinea) derived from TanDEM-X data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1