{"title":"Fabrication of anisotropic superhydrophobic surface based on the Nepenthes slippery zone","authors":"Lixin Wang, Shaobo Ma, Shixing Yan, Shiyun Dong","doi":"10.1680/jbibn.21.00042","DOIUrl":null,"url":null,"abstract":"Depending on its highly evolved structures that consist of microscale lunate cells and nanoscale wax coverings, the slippery zone of <i>Nepenthes alata</i> shows significant anisotropic superhydrophobicity, which has gradually become the biomimetic prototype for designing superhydrophobic surfaces. In this study, the authors constructed the structures of the slippery zone into equidistantly distributed greenhouses and array of cylinders, therefore obtaining a biomimetic model of an anisotropic superhydrophobic surface. The greenhouses were printed using ultraviolet-cured material, via 3D printing, and then flake graphite was selected as a substitute for the array of cylinders (wax coverings) and was absorbed onto the printed greenhouses by using high-voltage electrostatic absorption technology. The contact/sliding angle was measured to verify the anisotropic superhydrophobic effect of the fabricated sample. The contact angle increases significantly with an increase in the greenhouse density (<i>l</i>/<i>L</i> value) and achieves a value of 152.6 ± 0.6° when <i>l</i>/<i>L</i> is 0.8, and the sliding angle toward bottom and top shows values of 3.07 ± 0.26° and 5.69 ± 0.24°, respectively. These results indicate that the fabricated sample has anisotropic superhydrophobicity. Therefore, this study provides a simple and low-cost approach for the biomimetic fabrication of anisotropic superhydrophobic surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Depending on its highly evolved structures that consist of microscale lunate cells and nanoscale wax coverings, the slippery zone of Nepenthes alata shows significant anisotropic superhydrophobicity, which has gradually become the biomimetic prototype for designing superhydrophobic surfaces. In this study, the authors constructed the structures of the slippery zone into equidistantly distributed greenhouses and array of cylinders, therefore obtaining a biomimetic model of an anisotropic superhydrophobic surface. The greenhouses were printed using ultraviolet-cured material, via 3D printing, and then flake graphite was selected as a substitute for the array of cylinders (wax coverings) and was absorbed onto the printed greenhouses by using high-voltage electrostatic absorption technology. The contact/sliding angle was measured to verify the anisotropic superhydrophobic effect of the fabricated sample. The contact angle increases significantly with an increase in the greenhouse density (l/L value) and achieves a value of 152.6 ± 0.6° when l/L is 0.8, and the sliding angle toward bottom and top shows values of 3.07 ± 0.26° and 5.69 ± 0.24°, respectively. These results indicate that the fabricated sample has anisotropic superhydrophobicity. Therefore, this study provides a simple and low-cost approach for the biomimetic fabrication of anisotropic superhydrophobic surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.