Large population sizes and crossover help in dynamic environments

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Computing Pub Date : 2022-08-11 DOI:10.1007/s11047-022-09915-0
Johannes Lengler, Jonas Meier
{"title":"Large population sizes and crossover help in dynamic environments","authors":"Johannes Lengler, Jonas Meier","doi":"10.1007/s11047-022-09915-0","DOIUrl":null,"url":null,"abstract":"<p>Dynamic linear functions on the boolean hypercube are functions which assign to each bit a positive weight, but the weights change over time. Throughout optimization, these functions maintain the same global optimum, and never have defecting local optima. Nevertheless, it was recently shown [Lengler, Schaller, FOCI 2019] that the <span>\\((1+1)\\)</span>-Evolutionary Algorithm needs exponential time to find or approximate the optimum for some algorithm configurations. In this experimental paper, we study the effect of larger population sizes for <i>dynamic binval</i>, the extreme form of dynamic linear functions. We find that moderately increased population sizes extend the range of efficient algorithm configurations, and that crossover boosts this positive effect substantially. Remarkably, similar to the static setting of monotone functions in [Lengler, Zou, FOGA 2019], the hardest region of optimization for <span>\\((\\mu +1)\\)</span>-EA is not close the optimum, but far away from it. In contrast, for the <span>\\((\\mu +1)\\)</span>-GA, the region around the optimum is the hardest region in all studied cases.Kindly check and confirm the inserted city name is correctly identified.Correct.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"6 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-022-09915-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic linear functions on the boolean hypercube are functions which assign to each bit a positive weight, but the weights change over time. Throughout optimization, these functions maintain the same global optimum, and never have defecting local optima. Nevertheless, it was recently shown [Lengler, Schaller, FOCI 2019] that the \((1+1)\)-Evolutionary Algorithm needs exponential time to find or approximate the optimum for some algorithm configurations. In this experimental paper, we study the effect of larger population sizes for dynamic binval, the extreme form of dynamic linear functions. We find that moderately increased population sizes extend the range of efficient algorithm configurations, and that crossover boosts this positive effect substantially. Remarkably, similar to the static setting of monotone functions in [Lengler, Zou, FOGA 2019], the hardest region of optimization for \((\mu +1)\)-EA is not close the optimum, but far away from it. In contrast, for the \((\mu +1)\)-GA, the region around the optimum is the hardest region in all studied cases.Kindly check and confirm the inserted city name is correctly identified.Correct.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
庞大的人口规模和跨界有助于在动态环境中
布尔超立方体上的动态线性函数是赋予每个位一个正权重的函数,但权重会随时间变化。在整个优化过程中,这些函数保持相同的全局最优,而不会有局部最优的缺陷。然而,最近的研究表明[Lengler, Schaller, FOCI 2019] \((1+1)\) -进化算法需要指数级的时间来找到或近似某些算法配置的最优解。在这篇实验论文中,我们研究了更大的种群大小对动态线性函数的极端形式——动态双函数的影响。我们发现适度增加的人口规模扩展了有效算法配置的范围,并且交叉实质上增强了这种积极效应。值得注意的是,与[Lengler, Zou, FOGA 2019]中单调函数的静态设置相似,\((\mu +1)\) -EA的最难优化区域不是靠近最优,而是远离最优。相反,对于\((\mu +1)\) -GA,在所有研究的情况下,最优周围的区域是最难的区域。请检查并确认所插入的城市名称是否正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
期刊最新文献
Real-time computing and robust memory with deterministic chemical reaction networks Integrated dynamic spiking neural P systems for fault line selection in distribution network Reaction mining for reaction systems Melding Boolean networks and reaction systems under synchronous, asynchronous and most permissive semantics Distinguishing genelet circuit input pulses via a pulse detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1