Insights in Hierarchical Clustering of Variables for Compositional Data

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Mathematical Geosciences Pub Date : 2023-11-16 DOI:10.1007/s11004-023-10115-4
Josep Antoni Martín-Fernández, Valentino Di Donato, Vera Pawlowsky-Glahn, Juan José Egozcue
{"title":"Insights in Hierarchical Clustering of Variables for Compositional Data","authors":"Josep Antoni Martín-Fernández, Valentino Di Donato, Vera Pawlowsky-Glahn, Juan José Egozcue","doi":"10.1007/s11004-023-10115-4","DOIUrl":null,"url":null,"abstract":"<p>R-mode hierarchical clustering is a method for forming hierarchical groups of mutually exclusive subsets of variables. This R-mode cluster method identifies interrelationships between variables which are useful for variable selection and dimension reduction. Importantly, the method is based on metric elements defined on the sample space of variables. Consequently, hierarchical clustering of compositional parts should respect the particular geometry of the simplex. In this work, the connections between concepts such as distance, cluster representative, compositional biplot, and log-ratio basis are explored within the framework of the most popular R-mode agglomerative hierarchical clustering methods. The approach is illustrated in a paleoecological study to identify groups of species sharing similar behavior.\n</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"66 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10115-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

R-mode hierarchical clustering is a method for forming hierarchical groups of mutually exclusive subsets of variables. This R-mode cluster method identifies interrelationships between variables which are useful for variable selection and dimension reduction. Importantly, the method is based on metric elements defined on the sample space of variables. Consequently, hierarchical clustering of compositional parts should respect the particular geometry of the simplex. In this work, the connections between concepts such as distance, cluster representative, compositional biplot, and log-ratio basis are explored within the framework of the most popular R-mode agglomerative hierarchical clustering methods. The approach is illustrated in a paleoecological study to identify groups of species sharing similar behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成分数据变量的层次聚类研究
r型分层聚类是一种由互斥的变量子集组成分层群的方法。这种r型聚类方法确定了变量之间的相互关系,这对变量选择和降维很有用。重要的是,该方法基于在变量样本空间上定义的度量元素。因此,组成部分的分层聚类应该尊重单纯形的特定几何形状。在这项工作中,在最流行的R-mode聚集分层聚类方法的框架内探索了距离、聚类代表性、组合双图和对数比基等概念之间的联系。这种方法在一项古生态学研究中得到了说明,该研究用于识别具有相似行为的物种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
期刊最新文献
Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification Quantifying and Analyzing the Uncertainty in Fault Interpretation Using Entropy Robust Optimization Using the Mean Model with Bias Correction From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1