Efficient algorithms for community aware ridesharing

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Geoinformatica Pub Date : 2023-11-23 DOI:10.1007/s10707-023-00509-1
Shuha Nabila, Tanzima Hashem, Samiul Anwar, A. B. M. Alim Al Islam
{"title":"Efficient algorithms for community aware ridesharing","authors":"Shuha Nabila, Tanzima Hashem, Samiul Anwar, A. B. M. Alim Al Islam","doi":"10.1007/s10707-023-00509-1","DOIUrl":null,"url":null,"abstract":"<p>Ridesharing services have been becoming a prominent solution to reduce road traffic congestion and environmental pollution in urban areas. Existing ridesharing services fall apart in ensuring the social comfort of the riders. We formulate a Community aware Ridesharing Group Set (CaRGS) query that satisfies the spatial and social constraints of the riders and finds a set of ridesharing groups with the maximum number of served riders. The CaRGS query utilizes user social data in community levels to ensure user privacy. We show that the problem of finding CaRGS query answer is NP-Hard and propose two heuristic approaches: a hierarchical approach and an iterative approach to evaluate CaRGS queries. We evaluate the effectiveness, efficiency, and accuracy of our solution through extensive experiments using real datasets and present a comparative analysis among the proposed algorithms.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"25 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-023-00509-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Ridesharing services have been becoming a prominent solution to reduce road traffic congestion and environmental pollution in urban areas. Existing ridesharing services fall apart in ensuring the social comfort of the riders. We formulate a Community aware Ridesharing Group Set (CaRGS) query that satisfies the spatial and social constraints of the riders and finds a set of ridesharing groups with the maximum number of served riders. The CaRGS query utilizes user social data in community levels to ensure user privacy. We show that the problem of finding CaRGS query answer is NP-Hard and propose two heuristic approaches: a hierarchical approach and an iterative approach to evaluate CaRGS queries. We evaluate the effectiveness, efficiency, and accuracy of our solution through extensive experiments using real datasets and present a comparative analysis among the proposed algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社区意识的高效拼车算法
拼车服务已经成为减少城市道路交通拥堵和环境污染的主要解决方案。现有的拼车服务无法保证乘客的社交舒适性。我们建立了一个社区感知的拼车组集(CaRGS)查询,该查询满足乘客的空间和社会约束,并找到一组服务人数最多的拼车组。CaRGS查询利用社区级别的用户社交数据来确保用户隐私。我们证明了寻找CaRGS查询答案的问题是NP-Hard的,并提出了两种启发式方法:一种分层方法和一种迭代方法来评估CaRGS查询。我们通过使用真实数据集的大量实验来评估我们的解决方案的有效性、效率和准确性,并对所提出的算法进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
期刊最新文献
LENS: label sparsity-tolerant adversarial learning on spatial deceptive reviews A case study of spatiotemporal forecasting techniques for weather forecasting CLMTR: a generic framework for contrastive multi-modal trajectory representation learning Periodicity aware spatial-temporal adaptive hypergraph neural network for traffic forecasting ICN: Interactive convolutional network for forecasting travel demand of shared micromobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1