Anqi Liang, Bin Yao, Jiong Xie, Wenli Zheng, Yanyan Shen, Qiqi Ge
{"title":"CLMTR: a generic framework for contrastive multi-modal trajectory representation learning","authors":"Anqi Liang, Bin Yao, Jiong Xie, Wenli Zheng, Yanyan Shen, Qiqi Ge","doi":"10.1007/s10707-024-00528-6","DOIUrl":null,"url":null,"abstract":"<p>Multi-modal trajectory representation learning aims to convert raw trajectories into low-dimensional embeddings to facilitate downstream trajectory analysis tasks. However, existing methods focus on spatio-temporal trajectories and often neglect additional modal features such as textual or imagery data. Moreover, these methods do not fully consider the correlations among different modal features and the relationships among trajectories, thus hindering the generation of generic and semantically enriched representations. To address these limitations, we propose a generic <u>C</u>ontrastive <u>L</u>earning-based <u>M</u>ulti-modal <u>T</u>rajectory <u>R</u>epresentation framework, termed CLMTR. Specifically, we incorporate intra- and inter-trajectory contrastive learning components to capture the correlations among diverse modal features and the intricate relationships among trajectories, obtaining generic and semantically enriched trajectory representations. We develop multi-modal feature embedding and attention-based fusion approaches to capture the multi-modal characteristics and adaptively obtain the unified embeddings. Experimental results on two real-world datasets demonstrate the superior performance of CLMTR over state-of-the-art methods in three downstream tasks.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00528-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal trajectory representation learning aims to convert raw trajectories into low-dimensional embeddings to facilitate downstream trajectory analysis tasks. However, existing methods focus on spatio-temporal trajectories and often neglect additional modal features such as textual or imagery data. Moreover, these methods do not fully consider the correlations among different modal features and the relationships among trajectories, thus hindering the generation of generic and semantically enriched representations. To address these limitations, we propose a generic Contrastive Learning-based Multi-modal Trajectory Representation framework, termed CLMTR. Specifically, we incorporate intra- and inter-trajectory contrastive learning components to capture the correlations among diverse modal features and the intricate relationships among trajectories, obtaining generic and semantically enriched trajectory representations. We develop multi-modal feature embedding and attention-based fusion approaches to capture the multi-modal characteristics and adaptively obtain the unified embeddings. Experimental results on two real-world datasets demonstrate the superior performance of CLMTR over state-of-the-art methods in three downstream tasks.
期刊介绍:
GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds.
This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.