{"title":"A case study of spatiotemporal forecasting techniques for weather forecasting","authors":"Shakir Showkat Sofi, Ivan Oseledets","doi":"10.1007/s10707-024-00530-y","DOIUrl":null,"url":null,"abstract":"<p>The majority of real-world processes are spatiotemporal, and the data generated by them exhibits both spatial and temporal evolution. Weather is one of the most essential processes in this domain, and weather forecasting has become a crucial part of our daily routine. Weather data analysis is considered the most complex and challenging task. Although numerical weather prediction models are currently state-of-the-art, they are resource-intensive and time-consuming. Numerous studies have proposed time series-based models as a viable alternative to numerical forecasts. Recent research in the area of time series analysis indicates significant advancements, particularly regarding the use of state-space-based models (white box) and, more recently, the integration of machine learning and deep neural network-based models (black box). The most famous examples of such models are RNNs and transformers. These models have demonstrated remarkable results in the field of time-series analysis and have demonstrated effectiveness in modelling temporal correlations. It is crucial to capture both temporal and spatial correlations for a spatiotemporal process, as the values at nearby locations and time affect the values of a spatiotemporal process at a specific point. This self-contained paper explores various regional data-driven weather forecasting methods, i.e., forecasting over multiple latitude-longitude points (matrix-shaped spatial grid) to capture spatiotemporal correlations. The results showed that spatiotemporal prediction models reduced computational costs while improving accuracy. In particular, the proposed tensor train dynamic mode decomposition-based forecasting model has comparable accuracy to the state-of-the-art models without the need for training. We provide convincing numerical experiments to show that the proposed approach is practical.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"42 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00530-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The majority of real-world processes are spatiotemporal, and the data generated by them exhibits both spatial and temporal evolution. Weather is one of the most essential processes in this domain, and weather forecasting has become a crucial part of our daily routine. Weather data analysis is considered the most complex and challenging task. Although numerical weather prediction models are currently state-of-the-art, they are resource-intensive and time-consuming. Numerous studies have proposed time series-based models as a viable alternative to numerical forecasts. Recent research in the area of time series analysis indicates significant advancements, particularly regarding the use of state-space-based models (white box) and, more recently, the integration of machine learning and deep neural network-based models (black box). The most famous examples of such models are RNNs and transformers. These models have demonstrated remarkable results in the field of time-series analysis and have demonstrated effectiveness in modelling temporal correlations. It is crucial to capture both temporal and spatial correlations for a spatiotemporal process, as the values at nearby locations and time affect the values of a spatiotemporal process at a specific point. This self-contained paper explores various regional data-driven weather forecasting methods, i.e., forecasting over multiple latitude-longitude points (matrix-shaped spatial grid) to capture spatiotemporal correlations. The results showed that spatiotemporal prediction models reduced computational costs while improving accuracy. In particular, the proposed tensor train dynamic mode decomposition-based forecasting model has comparable accuracy to the state-of-the-art models without the need for training. We provide convincing numerical experiments to show that the proposed approach is practical.
期刊介绍:
GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds.
This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.