Meta-learning based passenger flow prediction for newly-operated stations

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Geoinformatica Pub Date : 2023-11-29 DOI:10.1007/s10707-023-00510-8
Kuo Han, Jinlei Zhang, Xiaopeng Tian, Songsong Li, Chunqi Zhu
{"title":"Meta-learning based passenger flow prediction for newly-operated stations","authors":"Kuo Han, Jinlei Zhang, Xiaopeng Tian, Songsong Li, Chunqi Zhu","doi":"10.1007/s10707-023-00510-8","DOIUrl":null,"url":null,"abstract":"<p>By tapping into the human mobility of the urban rail transit (URT) network to understand the travel demands and characteristics of passengers in the urban space, URT managers are able to obtain more support for decision-making to improve the effectiveness of operation and management, the travel experience of passengers, as well as public safety. However, not all URT networks have sufficient human mobility data (e.g., newly-operated URT networks). It is necessary to provide data support for mining human mobility in data-poor URT networks. Therefore, we propose a method called Meta Long Short-Term Memory Network (Meta-LSTM) for passenger flow prediction at URT stations to provide data support for networks that lack data. The Meta-LSTM is to construct a framework that increases the generalization ability of a long short-term memory network (LSTM) to various passenger flow characteristics by learning passenger flow characteristics from multiple data-rich stations and then applying the learned parameter to data-scarce stations by parameter initialization. The Meta-LSTM is applied to the URT network of Nanning, Hangzhou, and Beijing, China. The experiments on three real-world URT networks demonstrate the effectiveness of our proposed Meta-LSTM over several competitive baseline models. Results also show that our proposed Meta-LSTM has a good generalization ability to various passenger flow characteristics, which can provide a reference for passenger flow prediction in the stations with limited data.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"174 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-023-00510-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

By tapping into the human mobility of the urban rail transit (URT) network to understand the travel demands and characteristics of passengers in the urban space, URT managers are able to obtain more support for decision-making to improve the effectiveness of operation and management, the travel experience of passengers, as well as public safety. However, not all URT networks have sufficient human mobility data (e.g., newly-operated URT networks). It is necessary to provide data support for mining human mobility in data-poor URT networks. Therefore, we propose a method called Meta Long Short-Term Memory Network (Meta-LSTM) for passenger flow prediction at URT stations to provide data support for networks that lack data. The Meta-LSTM is to construct a framework that increases the generalization ability of a long short-term memory network (LSTM) to various passenger flow characteristics by learning passenger flow characteristics from multiple data-rich stations and then applying the learned parameter to data-scarce stations by parameter initialization. The Meta-LSTM is applied to the URT network of Nanning, Hangzhou, and Beijing, China. The experiments on three real-world URT networks demonstrate the effectiveness of our proposed Meta-LSTM over several competitive baseline models. Results also show that our proposed Meta-LSTM has a good generalization ability to various passenger flow characteristics, which can provide a reference for passenger flow prediction in the stations with limited data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元学习的新站客流预测
利用城市轨道交通网络的人的移动性,了解城市空间中乘客的出行需求和特征,可以为轨道交通管理者获得更多的决策支持,从而提高运营管理的有效性,改善乘客的出行体验,提高公共安全。然而,并不是所有的轨道交通网络都有足够的人员移动数据(例如,新运营的轨道交通网络)。在数据贫乏的轨道交通网络中,为挖掘人的移动性提供数据支持是十分必要的。因此,我们提出了一种称为元长短期记忆网络(Meta- lstm)的轨道交通车站客流预测方法,为缺乏数据的网络提供数据支持。Meta-LSTM是通过学习多个数据丰富的站点的客流特征,然后通过参数初始化将学习到的参数应用于数据稀缺的站点,从而构建一个框架,提高LSTM对各种客流特征的泛化能力。Meta-LSTM应用于中国南宁、杭州和北京的轨道交通网络。在三个真实的URT网络上的实验证明了我们提出的Meta-LSTM在几个竞争基线模型上的有效性。结果还表明,本文提出的Meta-LSTM对各种客流特征具有良好的泛化能力,可为数据有限的车站客流预测提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
期刊最新文献
LENS: label sparsity-tolerant adversarial learning on spatial deceptive reviews A case study of spatiotemporal forecasting techniques for weather forecasting CLMTR: a generic framework for contrastive multi-modal trajectory representation learning Periodicity aware spatial-temporal adaptive hypergraph neural network for traffic forecasting ICN: Interactive convolutional network for forecasting travel demand of shared micromobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1