New insights into component matching mechanism in the compression system of double bypass engine

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE Propulsion and Power Research Pub Date : 2024-03-01 DOI:10.1016/j.jppr.2022.07.007
Ruoyu Wang , Xianjun Yu , Baojie Liu , Guangfeng An
{"title":"New insights into component matching mechanism in the compression system of double bypass engine","authors":"Ruoyu Wang ,&nbsp;Xianjun Yu ,&nbsp;Baojie Liu ,&nbsp;Guangfeng An","doi":"10.1016/j.jppr.2022.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Variable cycle engine (VCE) is one of the most promising technologies for the next-generation aircraft, the matching of different components in the compression system is a key difficulty VCE faced. To investigate the component matching mechanisms in the VCE compression system, an advanced throughflow program is employed to calculate the characteristic lines of each component, and a zero-dimensional method is developed to capture the component performance deviation during the coupling working process. By setting the compressor stall and choke conditions as the boundary, the operation range of the compression system is first clarified, and the aerodynamic performance in the operation zone is discussed, thus providing a theoretical basis for optimization of the engine operating control scheme. Results show that the efficiency of the core flow is optimum at the left-bottom corner of the operation region, while the total pressure ratio peaks at the right-top area, hence a balance is needed when deciding the matching point. Regulations of component control parameters will change the position of the operation zone, as well as the corresponding aerodynamic performance. Decreasing the core driven fan stage rotating speed can improve the total bypass ratio, yet the total pressure ratio of the core flow will be decreased. Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly. The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed, both ways will decrease the total pressure ratio of the core flow. Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 1","pages":"Pages 118-131"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X23000706/pdfft?md5=cf67f8324e6d70f207b5f22f144e1366&pid=1-s2.0-S2212540X23000706-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000706","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Variable cycle engine (VCE) is one of the most promising technologies for the next-generation aircraft, the matching of different components in the compression system is a key difficulty VCE faced. To investigate the component matching mechanisms in the VCE compression system, an advanced throughflow program is employed to calculate the characteristic lines of each component, and a zero-dimensional method is developed to capture the component performance deviation during the coupling working process. By setting the compressor stall and choke conditions as the boundary, the operation range of the compression system is first clarified, and the aerodynamic performance in the operation zone is discussed, thus providing a theoretical basis for optimization of the engine operating control scheme. Results show that the efficiency of the core flow is optimum at the left-bottom corner of the operation region, while the total pressure ratio peaks at the right-top area, hence a balance is needed when deciding the matching point. Regulations of component control parameters will change the position of the operation zone, as well as the corresponding aerodynamic performance. Decreasing the core driven fan stage rotating speed can improve the total bypass ratio, yet the total pressure ratio of the core flow will be decreased. Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly. The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed, both ways will decrease the total pressure ratio of the core flow. Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双涵道发动机压缩系统部件匹配机理的新认识
变循环发动机是下一代飞机最具发展前景的技术之一,压缩系统中各部件的匹配是变循环发动机面临的关键难题。为了研究VCE压缩系统中各部件的匹配机理,采用先进的通流程序计算各部件的特征线,并建立零维方法捕捉耦合工作过程中各部件的性能偏差。以压气机失速和窒息工况为边界,首先明确了压缩系统的工作范围,并对该工作区域的气动性能进行了讨论,从而为发动机运行控制方案的优化提供了理论依据。结果表明,堆芯流效率在运行区域的左下角达到最佳,而总压比在右下角达到峰值,因此在选择匹配点时需要权衡。部件控制参数的规定将改变操作区域的位置,以及相应的气动性能。降低堆芯驱动风机级转速可以提高总涵道比,但会降低堆芯流的总压比。关闭核心驱动的风扇级进口导叶可以在不显著改变核心流动气动性能的情况下提高总涵道比。压缩系统的旁通比也可以通过增大风机失速余量或减小其转速来提高,这两种方式都会降低堆芯流的总压比。研究结果对变循环发动机设计过程中的工作点评价和热力循环优化具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
期刊最新文献
Auto-updating model-based control for thrust variation mitigation and acceleration performance enhancement of gas turbine aero-engines Experimental study of corner separation and unsteady characteristics in linear compressor cascades with and without sweeping jet actuator Solitary, periodic, kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory Structural design of aeroengine radiators: State of the art and perspectives Entropy optimization on Casson nanofluid flow with radiation and Arrhenius activation energy over different geometries: A numerical and statistical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1