Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness

Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
{"title":"Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness","authors":"Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang","doi":"arxiv-2309.05004","DOIUrl":null,"url":null,"abstract":"Directed bacterial motion due to external stimuli (chemotaxis) can, on the\nmesoscopic phase space, be described by a velocity change parameter $K$. The\nnumerical reconstruction for $K$ from experimental data provides useful\ninsights and plays a crucial role in model fitting, verification and\nprediction. In this article, the PDE-constrained optimization framework is\ndeployed to perform the reconstruction of $K$ from velocity-averaged, localized\ndata taken in the interior of a 1D domain. Depending on the data preparation\nand experimental setup, this problem can either be well- or ill-posed. We\nanalyze these situations, and propose a very specific design that guarantees\nlocal convergence. The design is adapted to the discretization of $K$ and\ndecouples the reconstruction of local values into smaller cell problem, opening\nup opportunities for parallelization. We further provide numerical evidence as\na showcase for the theoretical results.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"44 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.05004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Directed bacterial motion due to external stimuli (chemotaxis) can, on the mesoscopic phase space, be described by a velocity change parameter $K$. The numerical reconstruction for $K$ from experimental data provides useful insights and plays a crucial role in model fitting, verification and prediction. In this article, the PDE-constrained optimization framework is deployed to perform the reconstruction of $K$ from velocity-averaged, localized data taken in the interior of a 1D domain. Depending on the data preparation and experimental setup, this problem can either be well- or ill-posed. We analyze these situations, and propose a very specific design that guarantees local convergence. The design is adapted to the discretization of $K$ and decouples the reconstruction of local values into smaller cell problem, opening up opportunities for parallelization. We further provide numerical evidence as a showcase for the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动力学趋化核的宏观测量、适态性和病态性的数值重建
细菌由于外界刺激(趋化性)而进行的定向运动,在微观相空间上可以用速度变化参数K来描述。从实验数据中对$K$进行数值重建提供了有用的见解,在模型拟合、验证和预测中起着至关重要的作用。在本文中,部署了pde约束优化框架,从一维域内部的速度平均本地化数据中执行$K$的重建。根据数据准备和实验设置的不同,这个问题可以是适定的,也可以是不适定的。我们分析了这些情况,并提出了一个非常具体的设计,以保证局部收敛。该设计适合于K的离散化,并将局部值的重建解耦到较小的单元问题中,从而为并行化提供了机会。我们进一步提供了数值证据来展示理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1