Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$

Merlin Pelz, Michael J. Ward
{"title":"Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\\mathbb{R}^2$","authors":"Merlin Pelz, Michael J. Ward","doi":"arxiv-2409.00623","DOIUrl":null,"url":null,"abstract":"For a cell-bulk ODE-PDE model in $\\mathbb{R}^2$, a hybrid\nasymptotic-numerical theory is developed to provide a new theoretical and\ncomputationally efficient approach for studying how oscillatory dynamics\nassociated with spatially segregated dynamically active ``units\" or ``cells\"\nare regulated by a PDE bulk diffusion field that is both produced and absorbed\nby the entire cell population. The study of oscillator synchronization in a PDE\ndiffusion field was one of the initial aims of Yoshiki Kuramoto's foundational\nwork. For this cell-bulk model, strong localized perturbation theory, as\nextended to a time-dependent setting, is used to derive a new\nintegro-differential ODE system that characterizes intracellular dynamics in a\nmemory-dependent bulk-diffusion field. For this nonlocal reduced system, a\nnovel fast time-marching scheme, relying in part on the\n\\emph{sum-of-exponentials method} to numerically treat convolution integrals,\nis developed to rapidly and accurately compute numerical solutions to the\nintegro-differential system over long time intervals. For the special case of\nSel'kov reaction kinetics, a wide variety of large-scale oscillatory dynamical\nbehavior including phase synchronization, mixed-mode oscillations, and\nquorum-sensing are illustrated for various ranges of the influx and efflux\npermeability parameters, the bulk degradation rate and bulk diffusivity, and\nthe specific spatial configuration of cells. Results from our fast algorithm,\nobtained in under one minute of CPU time on a laptop, are benchmarked against\nPDE simulations of the cell-bulk model, which are performed with a commercial\nPDE solver, that have run-times that are orders of magnitude larger.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a cell-bulk ODE-PDE model in $\mathbb{R}^2$, a hybrid asymptotic-numerical theory is developed to provide a new theoretical and computationally efficient approach for studying how oscillatory dynamics associated with spatially segregated dynamically active ``units" or ``cells" are regulated by a PDE bulk diffusion field that is both produced and absorbed by the entire cell population. The study of oscillator synchronization in a PDE diffusion field was one of the initial aims of Yoshiki Kuramoto's foundational work. For this cell-bulk model, strong localized perturbation theory, as extended to a time-dependent setting, is used to derive a new integro-differential ODE system that characterizes intracellular dynamics in a memory-dependent bulk-diffusion field. For this nonlocal reduced system, a novel fast time-marching scheme, relying in part on the \emph{sum-of-exponentials method} to numerically treat convolution integrals, is developed to rapidly and accurately compute numerical solutions to the integro-differential system over long time intervals. For the special case of Sel'kov reaction kinetics, a wide variety of large-scale oscillatory dynamical behavior including phase synchronization, mixed-mode oscillations, and quorum-sensing are illustrated for various ranges of the influx and efflux permeability parameters, the bulk degradation rate and bulk diffusivity, and the specific spatial configuration of cells. Results from our fast algorithm, obtained in under one minute of CPU time on a laptop, are benchmarked against PDE simulations of the cell-bulk model, which are performed with a commercial PDE solver, that have run-times that are orders of magnitude larger.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\mathbb{R}^2$ 中细胞群 ODE-PDE 模型的同步记忆依赖性胞内振荡
对于$\mathbb{R}^2$中的细胞群ODE-PDE模型,发展了一种混合渐近-数值理论,为研究与空间上分离的动态活跃 "单元 "或 "细胞 "相关的振荡动力学如何受同时由整个细胞群产生和吸收的PDE群扩散场调控提供了一种新的理论和计算上有效的方法。研究 PDE 扩散场中的振荡器同步是仓本芳树的奠基工作的最初目标之一。对于这个细胞-体模型,将强局部扰动理论扩展到依赖时间的环境中,得出了一个新的内微分 ODE 系统,该系统描述了依赖记忆的体扩散场中的细胞内动力学。对于这个非局部还原系统,我们开发了一种新的快速时间行进方案,该方案部分依赖于emph{sum-of-exponentials method}来对卷积积分进行数值处理,从而快速准确地计算出长时间跨度上的微分方程数值解。针对塞尔科夫反应动力学的特殊情况,在不同范围的流入和流出渗透性参数、体降解率和体扩散率以及细胞的特定空间配置下,展示了各种大规模振荡动力学行为,包括相位同步、混合模式振荡和法定人数感应。我们的快速算法在笔记本电脑上的 CPU 运行时间不到一分钟,其结果与使用商用 PDE 求解器进行的细胞-体模型的 PDE 模拟结果进行了比较,后者的运行时间要大很多个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1