{"title":"A Numerical Study of the Effects of Projectile Properties on the Impact Behavior of Multi-ply Flexible Fabrics","authors":"Emre Palta, Howie Fang, David C. Weggel","doi":"10.1007/s10443-023-10180-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to assess how the impact behaviors of multi-ply flexible fabrics change by different projectile impacts using numerical simulations. The paper starts with the generation and verification of a multi-scale finite element model. Subsequently, a ten-ply flexible fabric is numerically subjected to the impacts of six different types of projectiles: 22-caliber conical, spherical, and right circular cylindrical (RCC), as well as 0.30-caliber conical, spherical, and RCC. The remaining sections of the paper explore the ballistic protection behavior of the ten-ply flexible fabric from all aspects, including ballistic limits, changes in energy, displacements, and damage patterns. The research findings suggest that the latter plies of the fabric have significant importance in dissipating energy compared to the initial plies, regardless of the type of projectile impact. This is because the first plies of the fabric tend to fail prematurely and reach their maximum strain limit before they can effectively dissipate energy. Although the initial plies showed consistent trends across all projectiles in terms of energy transfer, the size of the post-damage area and failure modes were influenced by the characteristics of the projectiles. Overall, this research emphasizes the need to explore the ballistic capability of multi-ply flexible woven fabrics impacted by different projectiles to improve both the construction and effectiveness of soft body armor.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 2","pages":"511 - 533"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10180-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to assess how the impact behaviors of multi-ply flexible fabrics change by different projectile impacts using numerical simulations. The paper starts with the generation and verification of a multi-scale finite element model. Subsequently, a ten-ply flexible fabric is numerically subjected to the impacts of six different types of projectiles: 22-caliber conical, spherical, and right circular cylindrical (RCC), as well as 0.30-caliber conical, spherical, and RCC. The remaining sections of the paper explore the ballistic protection behavior of the ten-ply flexible fabric from all aspects, including ballistic limits, changes in energy, displacements, and damage patterns. The research findings suggest that the latter plies of the fabric have significant importance in dissipating energy compared to the initial plies, regardless of the type of projectile impact. This is because the first plies of the fabric tend to fail prematurely and reach their maximum strain limit before they can effectively dissipate energy. Although the initial plies showed consistent trends across all projectiles in terms of energy transfer, the size of the post-damage area and failure modes were influenced by the characteristics of the projectiles. Overall, this research emphasizes the need to explore the ballistic capability of multi-ply flexible woven fabrics impacted by different projectiles to improve both the construction and effectiveness of soft body armor.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.