{"title":"Compressive Properties and Failure of Aluminum/Epoxy Resin Interpenetrating Phase Composites Reinforced by Glass Fiber","authors":"Mingming Su, Zhiming Zhou, Han Wang","doi":"10.1007/s10443-024-10276-3","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum/epoxy resin interpenetrating phase composites (IPCs) were directly strengthened by adding glass fiber of varying content (80 wt%, 100 wt%, 120 wt% and 140 wt%) inside the epoxy resin. The macro and micro structures of IPCs were intact, and the interface between aluminum and epoxy resin was well combined. As the content of glass fiber increased, the compressive strength of epoxy resin increased, but the failure was advanced, while IPCs displayed the opposite trend. IPCs exhibited three compression deformation modes, namely plastic deformation of aluminum, resin fracture and interface debonding. The digital image correlation and infrared thermal imager were used to characterize the apparent principal strain distribution and temperature distribution of IPCs to verify the deformation modes. The surface temperature damage evolution of IPCs included the rapid temperature rise stage, steady temperature stage and slight temperature drop stage, respectively, mainly corresponding to the linear elastic stage, plateau stage and densification stage in the stress-strain curves.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 1","pages":"243 - 255"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10276-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum/epoxy resin interpenetrating phase composites (IPCs) were directly strengthened by adding glass fiber of varying content (80 wt%, 100 wt%, 120 wt% and 140 wt%) inside the epoxy resin. The macro and micro structures of IPCs were intact, and the interface between aluminum and epoxy resin was well combined. As the content of glass fiber increased, the compressive strength of epoxy resin increased, but the failure was advanced, while IPCs displayed the opposite trend. IPCs exhibited three compression deformation modes, namely plastic deformation of aluminum, resin fracture and interface debonding. The digital image correlation and infrared thermal imager were used to characterize the apparent principal strain distribution and temperature distribution of IPCs to verify the deformation modes. The surface temperature damage evolution of IPCs included the rapid temperature rise stage, steady temperature stage and slight temperature drop stage, respectively, mainly corresponding to the linear elastic stage, plateau stage and densification stage in the stress-strain curves.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.