{"title":"Memory Network-Based Interpreter of User Preferences in Content-Aware Recommender Systems","authors":"Nhu-Thuat Tran, Hady W. Lauw","doi":"10.1145/3625239","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a novel architecture for two objectives <i>recommendation</i> and <i>interpretability</i> in a unified model. We leverage textual content as a source of interpretability in content-aware recommender systems. The goal is to characterize user preferences with a set of human-understandable attributes, each is described by a single word, enabling comprehension of user interests behind item adoptions. This is achieved via a dedicated architecture, which is interpretable by design, involving two components for recommendation and interpretation. In particular, we seek an <i>interpreter</i>, which accepts holistic user’s representation from a <i>recommender</i> to output a set of activated attributes describing user preferences. Besides encoding interpretability properties such as fidelity, conciseness and diversity, the proposed memory network-based <i>interpreter</i> enables the generalization of user representation by discovering relevant attributes that go beyond her adopted items’ textual content. We design experiments involving both human- and functionally-grounded evaluations of interpretability. Results on four real-world datasets show that our proposed model not only discovers highly relevant attributes for interpreting user preferences, but also enjoys comparable or better recommendation accuracy than a series of baselines.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"13 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3625239","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a novel architecture for two objectives recommendation and interpretability in a unified model. We leverage textual content as a source of interpretability in content-aware recommender systems. The goal is to characterize user preferences with a set of human-understandable attributes, each is described by a single word, enabling comprehension of user interests behind item adoptions. This is achieved via a dedicated architecture, which is interpretable by design, involving two components for recommendation and interpretation. In particular, we seek an interpreter, which accepts holistic user’s representation from a recommender to output a set of activated attributes describing user preferences. Besides encoding interpretability properties such as fidelity, conciseness and diversity, the proposed memory network-based interpreter enables the generalization of user representation by discovering relevant attributes that go beyond her adopted items’ textual content. We design experiments involving both human- and functionally-grounded evaluations of interpretability. Results on four real-world datasets show that our proposed model not only discovers highly relevant attributes for interpreting user preferences, but also enjoys comparable or better recommendation accuracy than a series of baselines.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.