{"title":"Personalized Individual Semantics Learning to Support a Large-Scale Linguistic Consensus Process","authors":"Yucheng Dong, Qin Ran, Xiangrui Chao, Congcong Li, Shui Yu","doi":"https://dl.acm.org/doi/10.1145/3533432","DOIUrl":null,"url":null,"abstract":"<p>When making decisions, individuals often express their preferences linguistically. The computing with words methodology is a key basis for supporting linguistic decision making, and the words in that methodology may mean different things to different individuals. Thus, in this article, we propose a continual personalized individual semantics learning model to support a consensus-reaching process in large-scale linguistic group decision making. Specifically, we first derive personalized numerical scales from the data of linguistic preference relations. We then perform a clustering ensemble method to divide large-scale group and conduct consensus management. Finally, we present a case study of intelligent route optimization in shared mobility to illustrate the usability of our proposed model. We also demonstrate its effectiveness and feasibility through a comparative analysis.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"52 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3533432","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
When making decisions, individuals often express their preferences linguistically. The computing with words methodology is a key basis for supporting linguistic decision making, and the words in that methodology may mean different things to different individuals. Thus, in this article, we propose a continual personalized individual semantics learning model to support a consensus-reaching process in large-scale linguistic group decision making. Specifically, we first derive personalized numerical scales from the data of linguistic preference relations. We then perform a clustering ensemble method to divide large-scale group and conduct consensus management. Finally, we present a case study of intelligent route optimization in shared mobility to illustrate the usability of our proposed model. We also demonstrate its effectiveness and feasibility through a comparative analysis.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.