{"title":"Surface and interior meridional circulation in the Sun","authors":"Shravan M. Hanasoge","doi":"10.1007/s41116-022-00034-7","DOIUrl":null,"url":null,"abstract":"<div><p>Solar meridional circulation is an axisymmetric flow system, extending from the equator to the poles (<span>\\(\\sim \\)</span>20 m/s at the surface, <span>\\(\\approx \\)</span>1% of the mean solar rotation rate), plunging inwards and subsequently completing the circuit in the interior through an equatorward return flow and a radially outward flow back up to the surface. This article reviews the profound role that meridional circulation plays in maintaining global dynamics and regulating large-scale solar magnetism. Because it is relatively weak in comparison to differential rotation (<span>\\(\\sim \\)</span>300 m/s, <span>\\(\\approx \\)</span>7% of the mean solar rotation rate) and owing to numerous systematical errors, accurate surface measurements were only first made in 1978 and initial inferences of interior meridional circulation were obtained using helioseismology two decades later. However, systematical biases have made it very challenging to reliably recover flow in the deep interior. Despite numerous advances that have served to improve the accuracy of inferences, the location of the return flow and the full extent of the circulation are still open problems. This article follows the historical developments and summarises contemporary advances that have led to modern inferences of surface and interior meridional flow.</p></div>","PeriodicalId":49147,"journal":{"name":"Living Reviews in Solar Physics","volume":"19 1","pages":""},"PeriodicalIF":20.9000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-022-00034-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-022-00034-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar meridional circulation is an axisymmetric flow system, extending from the equator to the poles (\(\sim \)20 m/s at the surface, \(\approx \)1% of the mean solar rotation rate), plunging inwards and subsequently completing the circuit in the interior through an equatorward return flow and a radially outward flow back up to the surface. This article reviews the profound role that meridional circulation plays in maintaining global dynamics and regulating large-scale solar magnetism. Because it is relatively weak in comparison to differential rotation (\(\sim \)300 m/s, \(\approx \)7% of the mean solar rotation rate) and owing to numerous systematical errors, accurate surface measurements were only first made in 1978 and initial inferences of interior meridional circulation were obtained using helioseismology two decades later. However, systematical biases have made it very challenging to reliably recover flow in the deep interior. Despite numerous advances that have served to improve the accuracy of inferences, the location of the return flow and the full extent of the circulation are still open problems. This article follows the historical developments and summarises contemporary advances that have led to modern inferences of surface and interior meridional flow.
太阳经向环流是一个轴对称的流动系统,从赤道向两极延伸(\(\sim \)地表20 m/s, \(\approx \) 1)% of the mean solar rotation rate), plunging inwards and subsequently completing the circuit in the interior through an equatorward return flow and a radially outward flow back up to the surface. This article reviews the profound role that meridional circulation plays in maintaining global dynamics and regulating large-scale solar magnetism. Because it is relatively weak in comparison to differential rotation (\(\sim \)300 m/s, \(\approx \)7% of the mean solar rotation rate) and owing to numerous systematical errors, accurate surface measurements were only first made in 1978 and initial inferences of interior meridional circulation were obtained using helioseismology two decades later. However, systematical biases have made it very challenging to reliably recover flow in the deep interior. Despite numerous advances that have served to improve the accuracy of inferences, the location of the return flow and the full extent of the circulation are still open problems. This article follows the historical developments and summarises contemporary advances that have led to modern inferences of surface and interior meridional flow.
期刊介绍:
Living Reviews in Solar Physics, a platinum open-access journal, publishes invited reviews covering research across all areas of solar and heliospheric physics. It distinguishes itself by maintaining a collection of high-quality reviews regularly updated by the authors. Established in 2004, it was founded by the Max Planck Institute for Solar System Research (MPS). "Living Reviews®" is a registered trademark of Springer International Publishing AG.