Models for the long-term variations of solar activity

IF 20.9 1区 物理与天体物理 Living Reviews in Solar Physics Pub Date : 2023-06-26 DOI:10.1007/s41116-023-00037-y
Bidya Binay Karak
{"title":"Models for the long-term variations of solar activity","authors":"Bidya Binay Karak","doi":"10.1007/s41116-023-00037-y","DOIUrl":null,"url":null,"abstract":"<div><p>One obvious feature of the solar cycle is its variation from one cycle to another. In this article, we review the dynamo models for the long-term variations of the solar cycle. By long-term variations, we mean the cycle modulations beyond the 11-year periodicity and these include, the Gnevyshev–Ohl/Even–Odd rule, grand minima, grand maxima, Gleissberg cycle, and Suess cycles. After a brief review of the observed data, we present the dynamo models for the solar cycle. By carefully analyzing the dynamo models and the observed data, we identify the following broad causes for the modulation: (1) magnetic feedback on the flow, (2) stochastic forcing, and (3) time delays in various processes of the dynamo. To demonstrate each of these causes, we present the results from some illustrative models for the cycle modulations and discuss their strengths and weakness. We also discuss a few critical issues and their current trends. The article ends with a discussion of our current state of ignorance about comparing detailed features of the magnetic cycle and the large-scale velocity from the dynamo models with robust observations.</p></div>","PeriodicalId":49147,"journal":{"name":"Living Reviews in Solar Physics","volume":"20 1","pages":""},"PeriodicalIF":20.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-023-00037-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-023-00037-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One obvious feature of the solar cycle is its variation from one cycle to another. In this article, we review the dynamo models for the long-term variations of the solar cycle. By long-term variations, we mean the cycle modulations beyond the 11-year periodicity and these include, the Gnevyshev–Ohl/Even–Odd rule, grand minima, grand maxima, Gleissberg cycle, and Suess cycles. After a brief review of the observed data, we present the dynamo models for the solar cycle. By carefully analyzing the dynamo models and the observed data, we identify the following broad causes for the modulation: (1) magnetic feedback on the flow, (2) stochastic forcing, and (3) time delays in various processes of the dynamo. To demonstrate each of these causes, we present the results from some illustrative models for the cycle modulations and discuss their strengths and weakness. We also discuss a few critical issues and their current trends. The article ends with a discussion of our current state of ignorance about comparing detailed features of the magnetic cycle and the large-scale velocity from the dynamo models with robust observations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳活动长期变化的模型
太阳周期的一个明显特征是它在不同周期之间的变化。在本文中,我们回顾了太阳周期长期变化的发电机模型。所谓长期变化,我们指的是超过11年周期的周期调制,包括格内维舍夫-奥尔/偶奇规则、极大极小期、极大极大期、格莱斯伯格周期和苏斯周期。在简要回顾了观测数据之后,我们提出了太阳周期的发电机模型。通过仔细分析发电机模型和观测数据,我们确定了以下主要原因:(1)磁反馈对流动,(2)随机强迫,(3)发电机各过程的时间延迟。为了说明这些原因,我们给出了周期调制的一些说明性模型的结果,并讨论了它们的优缺点。我们还讨论了一些关键问题及其当前趋势。文章最后讨论了我们目前对从发电机模型得到的磁周期和大尺度速度的详细特征与可靠观测结果进行比较的无知状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics ASTRONOMY & ASTROPHYSICS-
自引率
1.40%
发文量
3
期刊介绍: Living Reviews in Solar Physics, a platinum open-access journal, publishes invited reviews covering research across all areas of solar and heliospheric physics. It distinguishes itself by maintaining a collection of high-quality reviews regularly updated by the authors. Established in 2004, it was founded by the Max Planck Institute for Solar System Research (MPS). "Living Reviews®" is a registered trademark of Springer International Publishing AG.
期刊最新文献
Machine learning in solar physics Models for the long-term variations of solar activity A history of solar activity over millennia Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes Surface and interior meridional circulation in the Sun
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1